scholarly journals Assessment of Machine Learning Algorithms for Automatic Benthic Cover Monitoring and Mapping Using Towed Underwater Video Camera and High-Resolution Satellite Images

2018 ◽  
Vol 10 (5) ◽  
pp. 773 ◽  
Author(s):  
Hassan Mohamed ◽  
Kazuo Nadaoka ◽  
Takashi Nakamura
2021 ◽  
Vol 11 (18) ◽  
pp. 8714
Author(s):  
Elena Chirikhina ◽  
Andrey Chirikhin ◽  
Sabina Dewsbury-Ennis ◽  
Francesco Bianconi ◽  
Perry Xiao

We present our latest research on skin characterizations by using Contact Capacitive Imaging and High-Resolution Ultrasound Imaging with Machine Learning algorithms. Contact Capacitive Imaging is a novel imaging technology based on the dielectric constant measurement principle, with which we have studied the skin water content of different skin sites and performed image classification by using pre-trained Deep Learning Neural Networks through Transfer Learning. The results show lips and nose have the lowest water content, whilst cheek, eye corner and under-eye have the highest water content. The classification yields up to 83.8% accuracy. High-Resolution Ultrasound Imaging is a state-of-the-art ultrasound technology, and can produce high-resolution images of the skin and superficial soft tissue to a vertical resolution of about 40 microns, with which we have studied the thickness of different skin layers, such as stratum corneum, epidermis and dermis, around different locations on the face and around different body parts. The results show the chin has the highest stratum corneum thickness, and the arm has the lowest stratum corneum thickness. We have also developed two feature-based image classification methods which yield promising results. The outcomes of this study could provide valuable guidelines for cosmetic/medical research, and methods developed in this study can also be extended for studying damaged skin or skin diseases. The combination of Contact Capacitive Imaging and High-Resolution Ultrasound Imaging could be a powerful tool for skin studies.


Author(s):  
Cara Donohue ◽  
Yassin Khalifa ◽  
Shitong Mao ◽  
Subashan Perera ◽  
Ervin Sejdić ◽  
...  

Purpose The prevalence of dysphagia in patients with neurodegenerative diseases (ND) is alarmingly high and frequently results in morbidity and accelerated mortality due to subsequent adverse events (e.g., aspiration pneumonia). Swallowing in patients with ND should be continuously monitored due to the progressive disease nature. Access to instrumental swallow evaluations can be challenging, and limited studies have quantified changes in temporal/spatial swallow kinematic measures in patients with ND. High-resolution cervical auscultation (HRCA), a dysphagia screening method, has accurately differentiated between safe and unsafe swallows, identified swallow kinematic events (e.g., laryngeal vestibule closure [LVC]), and classified swallows between healthy adults and patients with ND. This study aimed to (a) compare temporal/spatial swallow kinematic measures between patients with ND and healthy adults and (b) investigate HRCA's ability to annotate swallow kinematic events in patients with ND. We hypothesized there would be significant differences in temporal/spatial swallow measurements between groups and that HRCA would accurately annotate swallow kinematic events in patients with ND. Method Participants underwent videofluoroscopic swallowing studies with concurrent HRCA. We used linear mixed models to compare temporal/spatial swallow measurements ( n = 170 ND patient swallows, n = 171 healthy adult swallows) and deep learning machine-learning algorithms to annotate specific temporal and spatial kinematic events in swallows from patients with ND. Results Differences ( p < .05) were found between groups for several temporal and spatial swallow kinematic measures. HRCA signal features were used as input to machine-learning algorithms and annotated upper esophageal sphincter (UES) opening, UES closure, LVC, laryngeal vestibule reopening, and hyoid bone displacement with 66.25%, 85%, 68.18%, 70.45%, and 44.6% accuracy, respectively, compared to human judges' measurements. Conclusion This study demonstrates HRCA's potential in characterizing swallow function in patients with ND and other patient populations.


2021 ◽  
Author(s):  
Mihai Niculita

&lt;p&gt;Machine learning algorithms are increasingly used in geosciences for the detection of susceptibility modeling of certain landforms or processes. The increased availability of high-resolution data and the increase of available machine learning algorithms opens up the possibility of creating datasets for the training of models for automatic detection of specific landforms. In this study, we tested the usage of LiDAR DEMs for creating a dataset of labeled images representing shallow single event landslides in order to use them for the detection of other events. The R stat implementation of the keras high-level neural networks API was used to build and test the proposed approach. A 5m LiDAR DEM was cut in 25 by 25 pixels tiles, and the tiles that overlayed shallow single event landslides were labeled accordingly, while the tiles that did not contain landslides were randomly selected to be labeled as non-landslides. The binary classification approach was tested with 255 grey levels elevation images and 255 grey levels shading images, the shading approach giving better results. The presented study case shows the possibility of using machine learning in the landslide detection on high-resolution DEMs.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document