scholarly journals Evaluation of Semi-Analytical Algorithms to Retrieve Particulate and Dissolved Absorption Coefficients in Gulf of California Optically Complex Waters

2018 ◽  
Vol 10 (9) ◽  
pp. 1443 ◽  
Author(s):  
Stella Betancur-Turizo ◽  
Adriana González-Silvera ◽  
Eduardo Santamaría-del-Ángel ◽  
Jing Tan ◽  
Robert Frouin

Two semi-analytical algorithms, Generalized Inherent Optical Property (GIOP) and Garver-Siegel-Maritorena (GSM), were evaluated in terms of how well they reproduced the absorption coefficient of phytoplankton (aph(λ)) and dissolved and detrital organic matter (adg(λ)) at three wavelengths (λ of 412, 443, and 488 nm) in a zone with optically complex waters, the Upper Gulf of California (UGC) and the Northern Gulf of California (NGC). In the UGC, detritus determines most of the total light absorption, whereas, in the NGC, chromophoric dissolved organic material (CDOM) and phytoplankton dominate. Upon comparing the results of each model with a database assembled from four cruises done from spring to summer (March through September) between 2011 and 2013, it was found that GIOP is a better estimator for aph(λ) than GSM, independently of the region. However, both algorithms underestimate in situ values in the NGC, whereas they overestimate them in the UGC. Errors are associated with the following: (a) the constant a*ph(λ) value used by GSM and GIOP (0.055 m2 mgChla−1) is higher than the most frequent value observed in this study’s data (0.03 m2 mgChla−1), and (b) satellite-derived chlorophyll a concentration (Chla) is biased high compared with in situ Chla. GIOP gave also better results for the adg(λ) estimation than GSM, especially in the NGC. The spectral slope Sdg was identified as an important parameter for estimating adg(λ), and this study’s results indicated that the use of a fixed input value in models was not adequate. The evaluation confirms the lack of generality of algorithms like GIOP and GSM, whose reflectance model is too simplified to capture expected variability. Finally, a greater monitoring effort is suggested in the study area regarding the collection of in situ reflectance data, which would allow explaining the effects that detritus and CDOM may have on the semi-analytical reflectance inversions, as well as isolating the possible influence of the atmosphere on the satellite-derived water reflectance and Chla.

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Martha Bastidas-Salamanca ◽  
Adriana Gonzalez-Silvera ◽  
Roberto Millán-Núñez ◽  
Eduardo Santamaria-del-Angel ◽  
Robert Frouin

Bio-optical variables in the Northern Gulf of California were analyzed using in situ and satellite data obtained during a cruise in June 2008. The study area was divided into three bio-optical regions: Upper Gulf (UG), Northern Gulf (NG), and Great Isles (GI). Each region was characterized according to phytoplankton pigment concentration, phytoplankton and nonpigmented material spectral absorption coefficients, and spectral reflectance. Observed patterns were an indication of the shift in bio-optical conditions from north to south going from turbid and eutrophic waters to mesotrophic ones. Although there was a good agreement between satellite and in situ Chla (RMSE ±33%), an overestimation of in situ Chla was observed. This was partly explained by the presence of nonalgal particles, as well as the influence of desert and continental aerosols, which is generally overcorrected in the standard processing. The UG and NG could be considered as Case  2 waters, but they did exhibit different bio-optical characteristics. This implies that both biological and optical properties should be invoked to better understand water reflectance variability in the study region and its implications for the remote sensing of Chla and biogeochemical processes.


Author(s):  
Yuji SAKUNO ◽  
Yasushi MIYAMOTO ◽  
Toshiaki KOZU ◽  
Toyoshi SHIMOMAI ◽  
Tsuneo MATSUNAGA ◽  
...  

2021 ◽  
Author(s):  
Dwaipayan Deb ◽  
Pavan Chakraborty

Abstract Surfaces of solid solar system objects are covered by layers of particulate materials called regolith originated from their surface bedrock. They preserve important information about surface geological processes. Often regolith is composed of more than one type of particle in terms of composition, maturity, size, etc. Experiments and theoretical works are being carried out to constrain the result of mixing and extract the abundance of compositional end-members from regolith spectra. In this work we have studied, photometric light scattering from simulated surfaces made of two different materials – one is highly bright quartz particles ≈ 80µm and the other moderately bright sandstone particles ≈ 250µm. The samples were mixed with varying proportions and investigated at normal illumination conditions to avoid the shadowing effect. Said combinations may resemble ice mixed regolith on various solar system objects and therefore important for in situ observations. We find that the combinations show a linear trend in the corresponding reflectance data in terms of their mixing proportion and some interesting facts come out when compared to previous studies.


2018 ◽  
Vol 75 (8) ◽  
pp. 2523-2532 ◽  
Author(s):  
P. Trent Vonich ◽  
Gregory J. Hakim

Abstract Since the pioneering paper by Nastrom and Gage on aircraft-derived power spectra, significant progress has been made in understanding the wavenumber distribution of energy in Earth’s atmosphere and its implications for the intrinsic limits of weather forecasting. Improvements in tropical cyclone intensity predictions have lagged those of global weather forecasting, and limited intrinsic predictability may be partially responsible. In this study, we construct power spectra from aircraft data of over 1200 missions carried out by the National Oceanic and Atmospheric Administration (NOAA) and Air Force Reserve Command (AFRC) Hurricane Hunters. Each mission is parsed into distinct flight legs, and legs meeting a specified set of criteria are used for spectral analysis. Here, we produce power spectra composites for each category of the Saffir–Simpson scale, revealing a systematic relationship between spectral slope and storm intensity. Specifically, as storm intensity increases, we find that 1) spectral slope becomes steeper across scales from 10 to 160 km and 2) the transition zone where spectral slope begins to steepen shifts downscale.


2018 ◽  
Vol 10 (9) ◽  
pp. 1336 ◽  
Author(s):  
Ling Wang ◽  
Xiuqing Hu ◽  
Lin Chen ◽  
Lingli He

The FengYun-3 (FY-3) Visible Infrared Radiometer (VIRR), along with its predecessor, the Multispectral Visible Infrared Scanning Radiometer (MVISR), onboard the FY-1C and FY-1D, has collected continuous daily global observations for 18 years. Achieving accurate and consistent calibration for VIRR reflective solar bands (RSBs) has been challenging, as there is no onboard calibrator and the frequency of in situ vicarious calibration is limited. In this study, a new set of reflectance calibration coefficients were derived for RSBs of the FY-3A, FY-3B, and FY-3C VIRRs using a multisite (MST) calibration method. This method is an extension of a previous MST calibration method, which relies on radiative transfer modeling over the multiple stable earth sites, and no synchronous in situ measurements are needed; hence, it can be used to update the VIRR calibration on a daily basis. The on-orbit radiometric changes of the VIRR onboard the FY-3 series were assessed based on analyses of new sets of calibration slopes. Then, all recalibrated VIRR reflectance data over Libya 4, the most frequently used stable Earth site, were compared with those provided from the Level 1B (L1B) product. Additional validation was performed by comparing the recalibrated VIRR data with those derived from radiative transfer simulations using measurements from automatic calibration instruments in Dunhuang. The results indicate that the radiometric response changes of the VIRRs onboard FY-3A and FY-3B were larger than those of FY-3C VIRR and were wavelength dependent. The current approach can provide consistent VIRR reflectances across different FY-3 satellite platforms. After recalibration, differences in top-of-atmosphere (TOA) reflectance data across different VIRRs during the whole lifetime decreased from 5–10% to less than 3%. The comparison with the automatic calibration method indicates that MST calibration shows good accuracy and lower temporal oscillations.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4285 ◽  
Author(s):  
Shubha Sathyendranath ◽  
Robert Brewin ◽  
Carsten Brockmann ◽  
Vanda Brotas ◽  
Ben Calton ◽  
...  

Ocean colour is recognised as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS); and spectrally-resolved water-leaving radiances (or remote-sensing reflectances) in the visible domain, and chlorophyll-a concentration are identified as required ECV products. Time series of the products at the global scale and at high spatial resolution, derived from ocean-colour data, are key to studying the dynamics of phytoplankton at seasonal and inter-annual scales; their role in marine biogeochemistry; the global carbon cycle; the modulation of how phytoplankton distribute solar-induced heat in the upper layers of the ocean; and the response of the marine ecosystem to climate variability and change. However, generating a long time series of these products from ocean-colour data is not a trivial task: algorithms that are best suited for climate studies have to be selected from a number that are available for atmospheric correction of the satellite signal and for retrieval of chlorophyll-a concentration; since satellites have a finite life span, data from multiple sensors have to be merged to create a single time series, and any uncorrected inter-sensor biases could introduce artefacts in the series, e.g., different sensors monitor radiances at different wavebands such that producing a consistent time series of reflectances is not straightforward. Another requirement is that the products have to be validated against in situ observations. Furthermore, the uncertainties in the products have to be quantified, ideally on a pixel-by-pixel basis, to facilitate applications and interpretations that are consistent with the quality of the data. This paper outlines an approach that was adopted for generating an ocean-colour time series for climate studies, using data from the MERIS (MEdium spectral Resolution Imaging Spectrometer) sensor of the European Space Agency; the SeaWiFS (Sea-viewing Wide-Field-of-view Sensor) and MODIS-Aqua (Moderate-resolution Imaging Spectroradiometer-Aqua) sensors from the National Aeronautics and Space Administration (USA); and VIIRS (Visible and Infrared Imaging Radiometer Suite) from the National Oceanic and Atmospheric Administration (USA). The time series now covers the period from late 1997 to end of 2018. To ensure that the products meet, as well as possible, the requirements of the user community, marine-ecosystem modellers, and remote-sensing scientists were consulted at the outset on their immediate and longer-term requirements as well as on their expectations of ocean-colour data for use in climate research. Taking the user requirements into account, a series of objective criteria were established, against which available algorithms for processing ocean-colour data were evaluated and ranked. The algorithms that performed best with respect to the climate user requirements were selected to process data from the satellite sensors. Remote-sensing reflectance data from MODIS-Aqua, MERIS, and VIIRS were band-shifted to match the wavebands of SeaWiFS. Overlapping data were used to correct for mean biases between sensors at every pixel. The remote-sensing reflectance data derived from the sensors were merged, and the selected in-water algorithm was applied to the merged data to generate maps of chlorophyll concentration, inherent optical properties at SeaWiFS wavelengths, and the diffuse attenuation coefficient at 490 nm. The merged products were validated against in situ observations. The uncertainties established on the basis of comparisons with in situ data were combined with an optical classification of the remote-sensing reflectance data using a fuzzy-logic approach, and were used to generate uncertainties (root mean square difference and bias) for each product at each pixel.


2016 ◽  
Vol 24 (13) ◽  
pp. 14036 ◽  
Author(s):  
Ina Lefering ◽  
Fethi Bengil ◽  
Charles Trees ◽  
Rüdiger Röttgers ◽  
David Bowers ◽  
...  

2020 ◽  
Author(s):  
Jonas Gliß ◽  
Augustin Mortier ◽  
Michael Schulz ◽  

<p>Within the framework of the AeroCom (Aerosol Comparisons between Observations and Models) initiative, the present day modelling of aerosol optical properties has been assessed using simulated data representative for the year 2010, from 14 global aerosol models participating in the Phase III Control experiment. The model versions are close or equal to those used for CMIP6 and AerChemMIP and inform also on bias in state of the art Earth-System-Models (ESMs).<br>Modelled column optical depths (total, fine and coarse mode AOD) and Angstrom Exponents (AE) were compared both with ground based observations from the Aerosol Robotic Network (AERONET, version 3) and space based observations from the AATSR instrument. In addition, the modelled AODs were compared with MODIS (Aqua and Terra) data and a satellite AOD data-set (MERGED-FMI) merged from 12 different individual AOD products. Furthermore, for the first time, the modelled near surface scattering (under dry conditions) and absorption coefficients were evaluated against measurements made at low relative humidity at surface in-situ GAW sites. <br>The AeroCom MEDIAN and most of the participating models underestimate the optical properties investigated, relative to remote sensing observations. AERONET AOD is underestimated by 21%+/-17%. Against satellite data, the model AOD biases range from -38% (MODIS-terra) to -17% (MERGED-FMI). Correlation coefficients of model AODs with AERONET, MERGED-FMI and AATSR-SU are high (0.8-0.9) and slightly lower against the two MODIS data-sets (0.6-0.8). Investigation of fine and coarse AODs from the MEDIAN model reveals biases of -10%+/-20% and -41%+/-29% against AERONET and -13% and -24% against AATSR-SU, respectively. The differences in model bias against AERONET and AATSR-SU are in agreement with the established bias of AATSR against AERONET. These results indicate that most of the AOD bias is due to missing coarse AOD in the regions covered by these observations. Underestimates are also found when comparing the models against the surface GAW observations, showing AeroCom MEDIAN mean bias and inter-model variation of -44%+/-22% and -32%+/-34% for scattering and absorption coefficients, respectively. Dry scattering shows higher underestimation than AOD at ambient relative humidity and is in agreement with recent findings that suggest that models tend to overestimate scattering enhancement due to hygroscopic growth. <br>Considerable diversity is found among the models in the simulated near surface absorption coefficients, particularly in regions associated with dust (e.g. Sahara, Tibet), biomass burning (e.g. Amazonia, Central Australia) and biogenic emissions (e.g. Amazonia). Regions associated with high anthropogenic BC emissions such as China and India exhibit comparatively good agreement for all models. Evaluation of modelled column AEs shows an underestimation of 9%+/-24% against AERONET and -21% against AATSR-SU. This suggests that models tend to overestimate particle size, with implications for lifetime and radiative transfer calculations. An investigation of modelled emissions, burdens and lifetimes, mass-specific-extinction coefficients (MECs) and optical depths (ODs) for each species and model reveals considerable diversity in most of these parameters. Inter-model spread of aerosol species lifetime appears to be similar to that of mass extinction coefficients, suggesting that AOD uncertainties are still associated to a broad spectrum of parameterised aerosol processes.</p>


Sign in / Sign up

Export Citation Format

Share Document