scholarly journals Evaluation of Spatial Generalization Characteristics of a Robust Classifier as Applied to Coral Reef Habitats in Remote Islands of the Pacific Ocean

2018 ◽  
Vol 10 (11) ◽  
pp. 1774 ◽  
Author(s):  
Justin Gapper ◽  
Hesham El-Askary ◽  
Erik Linstead ◽  
Thomas Piechota

This study was an evaluation of the spectral signature generalization properties of coral across four remote Pacific Ocean reefs. The sites under consideration have not been the subject of previous studies for coral classification using remote sensing data. Previous research regarding using remote sensing to identify reefs has been limited to in-situ assessment, with some researchers also performing temporal analysis of a selected area of interest. This study expanded the previous in-situ analyses by evaluating the ability of a basic predictor, Linear Discriminant Analysis (LDA), trained on Depth Invariant Indices calculated from the spectral signature of coral in one location to generalize to other locations, both within the same scene and in other scenes. Three Landsat 8 scenes were selected and masked for null, land, and obstructed pixels, and corrections for sun glint and atmospheric interference were applied. Depth Invariant Indices (DII) were then calculated according to the method of Lyzenga and an LDA classifier trained on ground truth data from a single scene. The resulting LDA classifier was then applied to other locations and the coral classification accuracy evaluated. When applied to ground truth data from the Palmyra Atoll location in scene path/row 065/056, the initial model achieved an accuracy of 80.3%. However, when applied to ground truth observations from another location within the scene, namely, Kingman Reef, it achieved an accuracy of 78.6%. The model was then applied to two additional scenes (Howland Island and Baker Island Atoll), which yielded an accuracy of 69.2% and 71.4%, respectively. Finally, the algorithm was retrained using data gathered from all four sites, which produced an overall accuracy of 74.1%.

2021 ◽  
Vol 13 (5) ◽  
pp. 857
Author(s):  
Orsolya Gyöngyi Varga ◽  
Zoltán Kovács ◽  
László Bekő ◽  
Péter Burai ◽  
Zsuzsanna Csatáriné Szabó ◽  
...  

We analyzed the Corine Land Cover 2018 (CLC2018) dataset to reveal the correspondence between land cover categories of the CLC and the spectral information of Landsat-8, Sentinel-2 and PlanetScope images. Level 1 categories of the CLC2018 were analyzed in a 25 km × 25 km study area in Hungary. Spectral data were summarized by land cover polygons, and the dataset was evaluated with statistical tests. We then performed Linear Discriminant Analysis (LDA) and Random Forest classifications to reveal if CLC L1 level categories were confirmed by spectral values. Wetlands and water bodies were the most likely to be confused with other categories. The least mixture was observed when we applied the median to quantify the pixel variance of CLC polygons. RF outperformed the LDA’s accuracy, and PlanetScope’s data were the most accurate. Analysis of class level accuracies showed that agricultural areas and wetlands had the most issues with misclassification. We proved the representativeness of the results with a repeated randomized test, and only PlanetScope seemed to be ungeneralizable. Results showed that CLC polygons, as basic units of land cover, can ensure 71.1–78.5% OAs for the three satellite sensors; higher geometric resolution resulted in better accuracy. These results justified CLC polygons, in spite of visual interpretation, can hold relevant information about land cover considering the surface reflectance values of satellites. However, using CLC as ground truth data for land cover classifications can be questionable, at least in the L1 nomenclature.


Author(s):  
K Choudhary ◽  
M S Boori ◽  
A Kupriyanov

The main objective of this study was to detect groundwater availability for agriculture in the Orenburg, Russia. Remote sensing data (RS) and geographic information system (GIS) were used to locate potential zones for groundwater in Orenburg. Diverse maps such as a base map, geomorphological, geological structural, lithology, drainage, slope, land use/cover and groundwater potential zone were prepared using the satellite remote sensing data, ground truth data, and secondary data. ArcGIS software was utilized to manipulate these data sets. The groundwater availability of the study was classified into different classes such as very high, high, moderate, low and very low based on its hydro-geomorphological conditions. The land use/cover map was prepared using a digital classification technique with the limited ground truth for mapping irrigated areas in the Orenburg, Russia.


2019 ◽  
Vol 11 (15) ◽  
pp. 1744 ◽  
Author(s):  
Daniel Maciel ◽  
Evlyn Novo ◽  
Lino Sander de Carvalho ◽  
Cláudio Barbosa ◽  
Rogério Flores Júnior ◽  
...  

Remote sensing imagery are fundamental to increasing the knowledge about sediment dynamics in the middle-lower Amazon floodplains. Moreover, they can help to understand both how climate change and how land use and land cover changes impact the sediment exchange between the Amazon River and floodplain lakes in this important and complex ecosystem. This study investigates the suitability of Landsat-8 and Sentinel-2 spectral characteristics in retrieving total (TSS) and inorganic (TSI) suspended sediments on a set of Amazon floodplain lakes in the middle-lower Amazon basin using in situ Remote Sensing Reflectance (Rrs) measurements to simulate Landsat 8/OLI (Operational Land Imager) and Sentinel 2/MSI (Multispectral Instrument) bands and to calibrate/validate several TSS and TSI empirical algorithms. The calibration was based on the Monte Carlo Simulation carried out for the following datasets: (1) All-Dataset, consisting of all the data acquired during four field campaigns at five lakes spread over the lower Amazon floodplain (n = 94); (2) Campaign-Dataset including samples acquired in a specific hydrograph phase (season) in all lakes. As sample size varied from one season to the other, n varied from 18 to 31; (3) Lake-Dataset including samples acquired in all seasons at a given lake with n also varying from 17 to 67 for each lake. The calibrated models were, then, applied to OLI and MSI scenes acquired in August 2017. The performance of three atmospheric correction algorithms was also assessed for both OLI (6S, ACOLITE, and L8SR) and MSI (6S, ACOLITE, and Sen2Cor) images. The impact of glint correction on atmosphere-corrected image performance was assessed against in situ glint-corrected Rrs measurements. After glint correction, the L8SR and 6S atmospheric correction performed better with the OLI and MSI sensors, respectively (Mean Absolute Percentage Error (MAPE) = 16.68% and 14.38%) considering the entire set of bands. However, for a given single band, different methods have different performances. The validated TSI and TSS satellite estimates showed that both in situ TSI and TSS algorithms provided reliable estimates, having the best results for the green OLI band (561 nm) and MSI red-edge band (705 nm) (MAPE < 21%). Moreover, the findings indicate that the OLI and MSI models provided similar errors, which support the use of both sensors as a virtual constellation for the TSS and TSI estimate over an Amazon floodplain. These results demonstrate the applicability of the calibration/validation techniques developed for the empirical modeling of suspended sediments in lower Amazon floodplain lakes using medium-resolution sensors.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5684
Author(s):  
Laura Bianca Bilius ◽  
Ştefan Gheorghe Pentiuc

Hyperspectral images (HSIs) are a powerful tool to classify the elements from an area of interest by their spectral signature. In this paper, we propose an efficient method to classify hyperspectral data using Voronoi diagrams and strong patterns in the absence of ground truth. HSI processing consumes a great deal of computing resources because HSIs are represented by large amounts of data. We propose a heuristic method that starts by applying Parafac decomposition for reduction and to construct the abundances matrix. Furthermore, the representative nodes from the abundances map are searched for. A multi-partition of these nodes is found, and based on this, strong patterns are obtained. Then, based on the hierarchical clustering of strong patterns, an optimum partition is found. After strong patterns are labeled, we construct the Voronoi diagram to extend the classification to the entire HSI.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3278 ◽  
Author(s):  
Kaori Otsu ◽  
Magda Pla ◽  
Jordi Vayreda ◽  
Lluís Brotons

The pine processionary moth (Thaumetopoea pityocampa Dennis and Schiff.), one of the major defoliating insects in Mediterranean forests, has become an increasing threat to the forest health of the region over the past two decades. After a recent outbreak of T. pityocampa in Catalonia, Spain, we attempted to estimate the damage severity by capturing the maximum defoliation period over winter between pre-outbreak and post-outbreak images. The difference in vegetation index (dVI) derived from Landsat 8 was used as the change detection indicator and was further calibrated with Unmanned Aerial Vehicle (UAV) imagery. Regression models between predicted dVIs and observed defoliation degrees by UAV were compared among five selected dVIs for the coefficient of determination. Our results found the highest R-squared value (0.815) using Moisture Stress Index (MSI), with an overall accuracy of 72%, as a promising approach for estimating the severity of defoliation in affected areas where ground-truth data is limited. We concluded with the high potential of using UAVs as an alternative method to obtain ground-truth data for cost-effectively monitoring forest health. In future studies, combining UAV images with satellite data may be considered to validate model predictions of the forest condition for developing ecosystem service tools.


2016 ◽  
Author(s):  
Anwar Abdelrahman Aly ◽  
Abdulrasoul Mosa Al-Omran ◽  
Abdulazeam Shahwan Sallam ◽  
Mohammad Ibrahim Al-Wabel ◽  
Mohammad Shayaa Al-Shayaa

Abstract. Vegetation cover (VC) changes detection is essential for a better understanding of the interactions and interrelationships between humans and their ecosystem. Remote sensing (RS) technology is one of the most beneficial tools to study spatial and temporal changes of VC. A case study has been conducted in the agro-ecosystem (AE) of Al-Kharj, in the centre of Saudi Arabia. Characteristics and dynamics of VC changes during a period of 26 years (1987–2013) were investigated. A multi-temporal set of images was processed using Landsat images; Landsat4 TM 1987, Landsat7 ETM+ 2000, and Landsat8 2013. The VC pattern and changes were linked to both natural and social processes to investigate the drivers responsible for the change. The analyses of the three satellite images concluded that the surface area of the VC increased by 107.4 % between 1987 and 2000, it was decreased by 27.5 % between years 2000 and 2013. The field study, review of secondary data and community problem diagnosis using the participatory rural appraisal (PRA) method suggested that the drivers for this change are the deterioration and salinization of both soil and water resources. Ground truth data indicated that the deteriorated soils in the eastern part of the Al-Kharj AE are frequently subjected to sand dune encroachment; while the south-western part is frequently subjected to soil and groundwater salinization. The groundwater in the western part of the ecosystem is highly saline, with a salinity ≥ 6 dS m−1. The ecosystem management approach applied in this study can be used to alike AE worldwide.


2020 ◽  
Vol 12 (23) ◽  
pp. 3958
Author(s):  
Parwati Sofan ◽  
David Bruce ◽  
Eriita Jones ◽  
M. Rokhis Khomarudin ◽  
Orbita Roswintiarti

This study establishes a new technique for peatland fire detection in tropical environments using Landsat-8 and Sentinel-2. The Tropical Peatland Combustion Algorithm (ToPeCAl) without longwave thermal infrared (TIR) (henceforth known as ToPeCAl-2) was tested on Landsat-8 Operational Land Imager (OLI) data and then applied to Sentinel-2 Multi Spectral Instrument (MSI) data. The research is aimed at establishing peatland fire information at higher spatial resolution and more frequent observation than from Landsat-8 data over Indonesia’s peatlands. ToPeCAl-2 applied to Sentinel-2 was assessed by comparing fires detected from the original ToPeCAl applied to Landsat-8 OLI/Thermal Infrared Sensor (TIRS) verified through comparison with ground truth data. An adjustment of ToPeCAl-2 was applied to minimise false positive errors by implementing pre-process masking for water and permanent bright objects and filtering ToPeCAl-2’s resultant detected fires by implementing contextual testing and cloud masking. Both ToPeCAl-2 with contextual test and ToPeCAl with cloud mask applied to Sentinel-2 provided high detection of unambiguous fire pixels (>95%) at 20 m spatial resolution. Smouldering pixels were less likely to be detected by ToPeCAl-2. The detected smouldering pixels from ToPeCAl-2 applied to Sentinel-2 with contextual testing and with cloud masking were only 35% and 56% correct, respectively; this needs further investigation and validation. These results demonstrate that even in the absence of TIR data, an adjusted ToPeCAl algorithm (ToPeCAl-2) can be applied to detect peatland fires at 20 m resolution with high accuracy especially for flaming. Overall, the implementation of ToPeCAl applied to cost-free and available Landsat-8 and Sentinel-2 data enables regular peatland fire monitoring in tropical environments at higher spatial resolution than other satellite-derived fire products.


Sign in / Sign up

Export Citation Format

Share Document