scholarly journals Improved PPP Ambiguity Resolution with the Assistance of Multiple LEO Constellations and Signals

2019 ◽  
Vol 11 (4) ◽  
pp. 408 ◽  
Author(s):  
Xin Li ◽  
Xingxing Li ◽  
Fujian Ma ◽  
Yongqiang Yuan ◽  
Keke Zhang ◽  
...  

The fusion of low earth orbit (LEO) constellation and Global Navigation Satellite Systems (GNSS) can increase the number of visible satellites and optimize spatial geometry, which is expected to improve the performance of precise point positioning (PPP) ambiguity resolution (AR). In addition, the multi-frequency signals of LEO satellites can bring a variety of observation combinations, which is potential to further improve the efficiency of PPP AR. In this contribution, multi-frequency PPP AR was achieved with the augmentation of different LEO constellations. Three types of LEO constellations were designed with 60, 192, and 288 satellites. Moreover, the corresponding observation data were simulated with the GNSS observations over the ground stations. The LEO constellations were designed to transmit navigation signals on three frequencies: L1, L2, and L5 at 1575.42, 1227.6, and 1176.45 MHz, respectively, which are consistent with the GPS signals. For PPP AR, the uncalibrated phase delay (UPD) products of GNSS and LEO were estimated first. Furthermore, the quality of UPD products was also analyzed. The research findings show that the performance of estimated LEO UPD is comparable to that of GNSS UPD. Based on the UPD products, LEO-augmented multi-GNSS PPP AR can be achieved. Numerous results show that the performance of single-system and multi-GNSS PPP AR can be significantly improved by introducing the LEO constellations. The augmentation performance is more remarkable in the case of increasing LEO satellites. The time to first fix (TTFF) of the GREC fixed solution can be shortened from 7.1 to 4.8, 1.1, and 0.7 min, by introducing observations of 60-, 192-, and 288-LEO constellations, respectively. The positioning accuracy of multi-GNSS fixed solutions is also improved by about 60%, 80%, and 90% with the augmentation of 60-, 192-, and 288-LEO constellations, respectively. Compared to the dual-frequency solutions, the triple-frequency LEO-augmented PPP fixed solution presents a better performance. The TTFF of GREC fixed solutions is shortened to 33 s with the augmentation of 288-LEO constellation under the triple-frequency environment. It is worth indicating that the 288-satellite LEO-only PPP AR was conducted in dual-frequency and triple-frequency modes, respectively. The averaged TTFFs of both modes are 71.8 s and 55.2 s, respectively. It indicates that LEO constellation with 288 satellites is capable of achieving high-precision positioning independently and shows an even better performance than GNSS-only solutions.

2019 ◽  
Vol 11 (3) ◽  
pp. 228 ◽  
Author(s):  
Xingxing Li ◽  
Hongbo Lv ◽  
Fujian Ma ◽  
Xin Li ◽  
Jinghui Liu ◽  
...  

It is widely known that in real-time kinematic (RTK) solution, the convergence and ambiguity-fixed speeds are critical requirements to achieve centimeter-level positioning, especially in medium-to-long baselines. Recently, the current status of the global navigation satellite systems (GNSS) can be improved by employing low earth orbit (LEO) satellites. In this study, an initial assessment is applied for LEO constellations augmented GNSS RTK positioning, where four designed LEO constellations with different satellite numbers, as well as the nominal GPS constellation, are simulated and adopted for analysis. In terms of aforementioned constellations solutions, the statistical results of a 68.7-km baseline show that when introducing 60, 96, 192, and 288 polar-orbiting LEO constellations, the RTK convergence time can be shortened from 4.94 to 2.73, 1.47, 0.92, and 0.73 min, respectively. In addition, the average time to first fix (TTFF) can be decreased from 7.28 to 3.33, 2.38, 1.22, and 0.87 min, respectively. Meanwhile, further improvements could be satisfied in several elements such as corresponding fixing ratio, number of visible satellites, position dilution of precision (PDOP) and baseline solution precision. Furthermore, the performance of the combined GPS/LEO RTK is evaluated over various-length baselines, based on convergence time and TTFF. The research findings show that the medium-to-long baseline schemes confirm that LEO satellites do helpfully obtain faster convergence and fixing, especially in the case of long baselines, using large LEO constellations, subsequently, the average TTFF for long baselines has a substantial shortened about 90%, in other words from 12 to 2 min approximately by combining with the larger LEO constellation of 192 or 288 satellites. It is interesting to denote that similar improvements can be observed from the convergence time.


2020 ◽  
Author(s):  
Min Li ◽  
Baocheng Zhang ◽  
Xiao Zhang

<p>When sensing the Earth’s ionosphere using pseudorange observations of global navigation satellite systems (GNSS), the satellite and receiver Differential Code Biases (DCBs) account for one of the main sources of error. For the sake of convenience, Receiver DCBs (DCBs) are commonly assumed as constants over a period of one day in the traditional carrier-to-code leveling (CCL) method. Thus, remarkable intraday variability in the receiver DCBs have been ignored in the commonly-used assumption and may seriously restrict the accuracy of ionospheric observable retrieval. The Modified CCL (MCCL) method can eliminate the adverse impact of the short-term variations of RDCBs on the retrieval of ionospheric TEC. With the rapid development of the GPS, GLONASS, Galileo and BeiDou systems, there is a strong demand of precise ionospheric TEC products for multiple constellations and frequencies. Considering the existed MCCL method can only be used for dual-frequency GNSS data, in this study, we extend the two-frequency MCCL method to the multi-frequency and multi-GNSS case and further carry out a series of investigations. In our proposed method, a newly full-rank multi-frequency (more than triple frequency) model with raw observations are established to synchronously estimate both the slant ionospheric delays and the RCB offset with respect to the reference epoch at each individual frequency. Based on the test results, compared to the traditional CCL-method, the accuracy of the ionospheric TEC retrieved using our proposed method can be improved from 5.12 TECu to 0.95 TECu in the case that significant short-term variations existed in receiver DCBs. In addition, the between-epoch fluctuations experienced by receiver code biases at all frequencies tracked by a single receiver can be detected by our the proposed method, and the dependence of multi-GNSS and multi-frequency RDCB offsets upon ambient temperature further are verified in this study. Compared to Galileo system, the RDCB in BDS show higher correlation with temperature. We also found that the RDCB at different frequencies of the same system show various characteristics.</p>


2021 ◽  
Author(s):  
Periklis-Konstantinos Diamantidis ◽  
Grzegorz Kłopotek ◽  
Rüdiger Haas ◽  
Jan Johansson

<p>The dawn of Beidou and Galileo as operational Global Navigation Satellite Systems (GNSS) alongside Global Positioning System (GPS) and GLONASS as well as new features that are now present in all GNSS, such as a triple-frequency setup, create new possibilities concerning improved estimation and assessment of various geodetic products. In particular, the multi-GNSS analysis gives an access to a better sky coverage allowing for improved estimation of zenith wet delays (ZWD) and tropospheric gradients (GRD), and can be used to determine integer phase ambiguities. The Multi-GNSS Experiment (MGEX), as realised by the International GNSS Service (IGS), provides orbit, clock and observation data for all operational GNSS. To take advantage of the new capabilities that these constellations bring, space-geodetic software packages have been retrofitted with Multi-GNSS-compliant modules. Based on this, two software packages, namely GipsyX and c5++, are utilised by way of the static Precise Point Positioning (PPP) approach using six months of data, and an assessment of the derived geodetic products is carried out for several GNSS receivers located at the Onsala core site. More specifically, we perform both single-constellation and multi-GNSS data analysis using Kalman filter and least-squares methods and assess the quality of the derived station positions, ZWD and GRD. A combined solution using all GNSS constellations is carried out and the improvement with respect to station position repeatabilities is assessed for each station. Results from the two software packages are compared with respect to each other and the discrepancies are discussed. Inter-system biases, which homogenise the different time scale that each GNSS operates in, and are necessary for the multi-GNSS combination, are estimated and presented. Finally, the applied inter-system weighting and its impact on the derived geodetic products are discussed.</p>


2020 ◽  
Author(s):  
Teng Liu ◽  
Baocheng Zhang ◽  
Yunbin Yuan ◽  
Xiao Zhang

<p>The ionospheric delay accounts for one of the major errors that the Global Navigation Satellite Systems (GNSS) suffer from. Hence, the ionosphere Vertical Total Electron Content (VTEC) map has been an important atmospheric product within the International GNSS Service (IGS) since its early establishment. In this contribution, an enhanced method has been proposed for the modeling of the ionosphere VTECs. Firstly, to cope with the rapid development of the newly-established Galileo and BeiDou constellations in recent years, we extend the current dual-system (GPS/GLONASS) solution to a quad-system (GPS/GLONASS/Galileo/BeiDou) solution. More importantly, instead of using dual-frequency observations based on the Carrier-to-Code Leveling (CCL) method, all available triple-frequency signals are utilized with a general raw-observation-based multi-frequency Precise Point Positioning (PPP) model, which can process dual-, triple- or even arbitrary-frequency observations compatibly and flexibly. Benefiting from this, quad-system slant ionospheric delays can be retrieved based on multi-frequency observations in a more flexible, accurate and reliable way. The PPP model has been applied in both post-processing global and real-time regional VTEC modeling. Results indicate that with the improved slant ionospheric delays, the corresponding VTEC models are also improved, comparing with the traditional CCL method.</p>


2020 ◽  
Vol 12 (14) ◽  
pp. 2310 ◽  
Author(s):  
Gen Liu ◽  
Fei Guo ◽  
Jian Wang ◽  
Mingyi Du ◽  
Lizhong Qu

The new generations of global navigation satellite system (GNSS) space vehicles can transmit three or more frequency signals. Multi-frequency observations bring a significant improvement to precise point positioning ambiguity resolution (PPP AR). However, the multi-frequency satellite code and phase biases need to be properly handled before conducting PPP AR. The traditional satellite bias correction methods, for example, the commonly used differential code biases (DCB), are limited to the dual-frequency ionosphere-free (IF) case and become more and more difficult to extend to multi-GNSS and multi-frequency cases. In this contribution, we propose the observable-specific signal bias (OSB) correction method for un-differenced and uncombined (UDUC) PPP AR. The OSB correction method, which includes observable-specific satellite code and phase bias correction, can directly apply kinds of OSBs to GNSS original observation data, thus, it is more appropriate for multi-GNSS and multi-frequency cases. In order to verify the performance of multi-frequency UDUC-PPP AR based on the OSB correction method, triple-frequency GPS observation data provided by 142 Multi-GNSS Experiment (MGEX) stations were used to estimate observable-specific satellite phase biases at the PPP service end and some of them were also used to conduct AR at the PPP user end. The experiment results showed: the averaged time-to-first-fix (TTFF) of triple-frequency GPS kinematic UDUC-PPP AR with observable-specific satellite code bias (SCB) corrections could reach about 22 min with about 29% improvement, compared with that without observable-specific SCB corrections; TTFF of triple-frequency static UDUC-PPP AR with observable-specific phase-specific time-variant inter-frequency clock bias (IFCB) corrections took about 15.6 min with about 64.3% improvement, compared with that without observable-specific IFCB corrections.


2021 ◽  
Author(s):  
Estel Cardellach ◽  
Weiqiang Li ◽  
Dallas Masters ◽  
Takayuki Yuasa ◽  
Franck Borde ◽  
...  

<p>Recently, different studies have shown evidence of signals transmitted by the Global Navigation Satellite Systems (GNSS), coherently reflected over some parts of the ocean, and received from cubesats. In particular, strong coherent scattering has been reported in regions with low water surface roughness as those near continental masses and in atolls. Over open ocean, few coherent signals were reported to be found, although the data sets were somewhat limited and certainly not exhaustive. The level of coherence in reflected GNSS signals depends on the roughness of the  surface (i.e. significant wave height and small scale ripples and waves induced by the wind), the viewing geometry (i.e. incidence angle, or equivalently, elevation angle of the GNSS satellite as seen from the point of reflection), propagation effects (namely ionospheric disturbances) and on the frequency (i.e. particular GNSS band, like L1/E1, L2 or L5/E5). These coherent measurements over ocean follow earlier evidence of coherent GNSS reflections over sea ice which date back to 2005, the time of UK-DMC mission. More recently, Sea Ice Thickness (SIT) retrievals have also been carried out with this technique, at an accuracy comparable to that of SMOS.</p><p>All the observations referred so far were done at a single frequency, L1/E1. So, there is an interest to explore the coherence at the other main GNSS bands, i.e. L2 and L5/E5 as well as to the widelane combinations between them (linear combinations of carrier-phase measurements, of longer effective wavelength). Spire Global radio occultation cubesats work at L1 and L2 frequency bands, and therefore provide unique dual-frequency raw data sets of reflected signals over open ocean, sea ice and inland water bodies. With these, it is possible to study the coherence of these targets at each of the bands and at their widelane combination, as well as the performance of altimetric retrievals at grazing angles of observation (very slant geometries, which facilitate coherence properties of the scattering). The dual-frequency observations can correct the ionospheric effects, and their widelane combinations, of longer effective wavelength, might expand the conditions for coherence. The fact that this new approach is fully compatible with small GNSS radio occultation payloads and missions, might represent a low cost source of precise altimetry to complement larger dedicated missions.</p><p>An ESA research study involving Spire Global and IEEC aims at studying this new potential altimetric technique. Raw data acquisitions from limb-looking antennas of Spire’s cubesat constellation were selected to be geographically and time collocated with ESA Sentinel 3A and 3B passes in order to compare the results of coherence and altimetry. For this study, the raw data at two frequencies, acquired at 6.2 Mbps, are shifted to intermediate frequencies and downloaded to the ground without any further processing. In-house software receivers are then applied to generate the reflected echoes or waveforms, and to track the phase of the carrier signals. Precise altimetry (a few cm in 20 ms integration) is then possible from these observables. The results of this activity will be shown, focusing on altimetric retrievals over large lakes.</p>


GEOMATICA ◽  
2016 ◽  
Vol 70 (2) ◽  
pp. 85-96 ◽  
Author(s):  
Jason Bond

The Nova Scotia Coordinate Referencing System (NSCRS) is Nova Scotia's current framework for providing location-based information. The NSCRS is the foundation for the province's geographic data, includ ing the land administration system. In 2012, the province began developing a modernization strategy to better execute its coordinate referencing program to address ongoing accuracy and accessibility needs. A net work of active control stations (ACSs) tracking global navigation satellite systems (GNSS) is at the core of the new strategy. In addition to providing better accuracy and accessibility to the NSCRS, the tech nol ogy has created new opportunities to sustain its passive control infrastructure. In 2015, the installation of 40 ACSs across the province was completed, providing industry with access to real-time, centimetre-level positioning. Over the course of the NSCRS modernization project, several tech nical considerations needed to be addressed pertaining to the design of the network, location of the ACSs, flow of the ACS data and the crowd sourcing of GNSS observation data to maintain the passive con trol sys tem. These technical considerations are reviewed and the solutions implemented to address the needs of this initiative are presented.


GPS Solutions ◽  
2020 ◽  
Vol 25 (1) ◽  
Author(s):  
Francesco Darugna ◽  
Jannes B. Wübbena ◽  
Gerhard Wübbena ◽  
Martin Schmitz ◽  
Steffen Schön ◽  
...  

Abstract The access to Android-based Global Navigation Satellite Systems (GNSS) raw measurements has become a strong motivation to investigate the feasibility of smartphone-based positioning. Since the beginning of this research, the smartphone GNSS antenna has been recognized as one of the main limitations. Besides multipath (MP), the radiation pattern of the antenna is the main site-dependent error source of GNSS observations. An absolute antenna calibration has been performed for the dual-frequency Huawei Mate20X. Antenna phase center offset (PCO) and variations (PCV) have been estimated to correct for antenna impact on the L1 and L5 phase observations. Accordingly, we show the relevance of considering the individual PCO and PCV for the two frequencies. The PCV patterns indicate absolute values up to 2 cm and 4 cm for L1 and L5, respectively. The impact of antenna corrections has been assessed in different multipath environments using a high-accuracy positioning algorithm employing an undifferenced observation model and applying ambiguity resolution. Successful ambiguity resolution is shown for a smartphone placed in a low multipath environment on the ground of a soccer field. For a rooftop open-sky test case with large multipath, ambiguity resolution was successful in 19 out of 35 data sets. Overall, the antenna calibration is demonstrated being an asset for smartphone-based positioning with ambiguity resolution, showing cm-level 2D root mean square error (RMSE).


Sign in / Sign up

Export Citation Format

Share Document