scholarly journals Non-Rigid Vehicle-Borne LiDAR-Assisted Aerotriangulation

2019 ◽  
Vol 11 (10) ◽  
pp. 1188
Author(s):  
Li Zheng ◽  
Yuhao Li ◽  
Meng Sun ◽  
Zheng Ji ◽  
Manzhu Yu ◽  
...  

VLS (Vehicle-borne Laser Scanning) can easily scan the road surface in the close range with high density. UAV (Unmanned Aerial Vehicle) can capture a wider range of ground images. Due to the complementary features of platforms of VLS and UAV, combining the two methods becomes a more effective method of data acquisition. In this paper, a non-rigid method for the aerotriangulation of UAV images assisted by a vehicle-borne light detection and ranging (LiDAR) point cloud is proposed, which greatly reduces the number of control points and improves the automation. We convert the LiDAR point cloud-assisted aerotriangulation into a registration problem between two point clouds, which does not require complicated feature extraction and match between point cloud and images. Compared with the iterative closest point (ICP) algorithm, this method can address the non-rigid image distortion with a more rigorous adjustment model and a higher accuracy of aerotriangulation. The experimental results show that the constraint of the LiDAR point cloud ensures the high accuracy of the aerotriangulation, even in the absence of control points. The root-mean-square error (RMSE) of the checkpoints on the x, y, and z axes are 0.118 m, 0.163 m, and 0.084m, respectively, which verifies the reliability of the proposed method. As a necessary condition for joint mapping, the research based on VLS and UAV images in uncontrolled circumstances will greatly improve the efficiency of joint mapping and reduce its cost.


Author(s):  
S. Peterson ◽  
J. Lopez ◽  
R. Munjy

<p><strong>Abstract.</strong> A small unmanned aerial vehicle (UAV) with survey-grade GNSS positioning is used to produce a point cloud for topographic mapping and 3D reconstruction. The objective of this study is to assess the accuracy of a UAV imagery-derived point cloud by comparing a point cloud generated by terrestrial laser scanning (TLS). Imagery was collected over a 320&amp;thinsp;m by 320&amp;thinsp;m area with undulating terrain, containing 80 ground control points. A SenseFly eBee Plus fixed-wing platform with PPK positioning with a 10.6&amp;thinsp;mm focal length and a 20&amp;thinsp;MP digital camera was used to fly the area. Pix4Dmapper, a computer vision based commercial software, was used to process a photogrammetric block, constrained by 5 GCPs while obtaining cm-level RMSE based on the remaining 75 checkpoints. Based on results of automatic aerial triangulation, a point cloud and digital surface model (DSM) (2.5&amp;thinsp;cm/pixel) are generated and their accuracy assessed. A bias less than 1 pixel was observed in elevations from the UAV DSM at the checkpoints. 31 registered TLS scans made up a point cloud of the same area with an observed horizontal root mean square error (RMSE) of 0.006m, and negligible vertical RMSE. Comparisons were made between fitted planes of extracted roof features of 2 buildings and centreline profile comparison of a road in both UAV and TLS point clouds. Comparisons showed an average +8&amp;thinsp;cm bias with UAV point cloud computing too high in two features. No bias was observed in the roof features of the southernmost building.</p>



2021 ◽  
Vol 10 (6) ◽  
pp. 367
Author(s):  
Simoni Alexiou ◽  
Georgios Deligiannakis ◽  
Aggelos Pallikarakis ◽  
Ioannis Papanikolaou ◽  
Emmanouil Psomiadis ◽  
...  

Analysis of two small semi-mountainous catchments in central Evia island, Greece, highlights the advantages of Unmanned Aerial Vehicle (UAV) and Terrestrial Laser Scanning (TLS) based change detection methods. We use point clouds derived by both methods in two sites (S1 & S2), to analyse the effects of a recent wildfire on soil erosion. Results indicate that topsoil’s movements in the order of a few centimetres, occurring within a few months, can be estimated. Erosion at S2 is precisely delineated by both methods, yielding a mean value of 1.5 cm within four months. At S1, UAV-derived point clouds’ comparison quantifies annual soil erosion more accurately, showing a maximum annual erosion rate of 48 cm. UAV-derived point clouds appear to be more accurate for channel erosion display and measurement, while the slope wash is more precisely estimated using TLS. Analysis of Point Cloud time series is a reliable and fast process for soil erosion assessment, especially in rapidly changing environments with difficult access for direct measurement methods. This study will contribute to proper georesource management by defining the best-suited methodology for soil erosion assessment after a wildfire in Mediterranean environments.



2021 ◽  
Author(s):  
Ali Mirzazade ◽  
Cosmin Popescu ◽  
Thomas Blanksvärd ◽  
Björn Täljsten

<p>In bridge inspection, vertical displacement is a relevant parameter for both short and long-term health monitoring. Assessing change in deflections could also simplify the assessment work for inspectors. Recent developments in digital camera technology and photogrammetry software enables point cloud with colour information (RGB values) to be generated. Thus, close range photogrammetry offers the potential of monitoring big and small-scale damages by point clouds. The current paper aims to monitor geometrical deviations in Pahtajokk Bridge, Northern Sweden, using an optical data acquisition technique. The bridge in this study is scanned two times by almost one year a part. After point cloud generation the datasets were compared to detect geometrical deviations. First scanning was carried out by both close range photogrammetry (CRP) and terrestrial laser scanning (TLS), while second scanning was performed by CRP only. Analyzing the results has shown the potential of CRP in bridge inspection.</p>



2019 ◽  
Vol 11 (18) ◽  
pp. 2154 ◽  
Author(s):  
Ján Šašak ◽  
Michal Gallay ◽  
Ján Kaňuk ◽  
Jaroslav Hofierka ◽  
Jozef Minár

Airborne and terrestrial laser scanning and close-range photogrammetry are frequently used for very high-resolution mapping of land surface. These techniques require a good strategy of mapping to provide full visibility of all areas otherwise the resulting data will contain areas with no data (data shadows). Especially, deglaciated rugged alpine terrain with abundant large boulders, vertical rock faces and polished roche-moutones surfaces complicated by poor accessibility for terrestrial mapping are still a challenge. In this paper, we present a novel methodological approach based on a combined use of terrestrial laser scanning (TLS) and close-range photogrammetry from an unmanned aerial vehicle (UAV) for generating a high-resolution point cloud and digital elevation model (DEM) of a complex alpine terrain. The approach is demonstrated using a small study area in the upper part of a deglaciated valley in the Tatry Mountains, Slovakia. The more accurate TLS point cloud was supplemented by the UAV point cloud in areas with insufficient TLS data coverage. The accuracy of the iterative closest point adjustment of the UAV and TLS point clouds was in the order of several centimeters but standard deviation of the mutual orientation of TLS scans was in the order of millimeters. The generated high-resolution DEM was compared to SRTM DEM, TanDEM-X and national DMR3 DEM products confirming an excellent applicability in a wide range of geomorphologic applications.



2020 ◽  
Vol 12 (6) ◽  
pp. 942 ◽  
Author(s):  
Maria Rosaria De Blasiis ◽  
Alessandro Di Benedetto ◽  
Margherita Fiani

The surface conditions of road pavements, including the occurrence and severity of distresses present on the surface, are an important indicator of pavement performance. Periodic monitoring and condition assessment is an essential requirement for the safety of vehicles moving on that road and the wellbeing of people. The traditional characterization of the different types of distress often involves complex activities, sometimes inefficient and risky, as they interfere with road traffic. The mobile laser systems (MLS) are now widely used to acquire detailed information about the road surface in terms of a three-dimensional point cloud. Despite its increasing use, there are still no standards for the acquisition and processing of the data collected. The aim of our work was to develop a procedure for processing the data acquired by MLS, in order to identify the localized degradations that mostly affect safety. We have studied the data flow and implemented several processing algorithms to identify and quantify a few types of distresses, namely potholes and swells/shoves, starting from very dense point clouds. We have implemented data processing in four steps: (i) editing of the point cloud to extract only the points belonging to the road surface, (ii) determination of the road roughness as deviation in height of every single point of the cloud with respect to the modeled road surface, (iii) segmentation of the distress (iv) computation of the main geometric parameters of the distress in order to classify it by severity levels. The results obtained by the proposed methodology are promising. The procedures implemented have made it possible to correctly segmented and identify the types of distress to be analyzed, in accordance with the on-site inspections. The tests carried out have shown that the choice of the values of some parameters to give as input to the software is not trivial: the choice of some of them is based on considerations related to the nature of the data, for others, it derives from the distress to be segmented. Due to the different possible configurations of the various distresses it is better to choose these parameters according to the boundary conditions and not to impose default values. The test involved a 100-m long urban road segment, the surface of which was measured with an MLS installed on a vehicle that traveled the road at 10 km/h.



Author(s):  
G. Stavropoulou ◽  
G. Tzovla ◽  
A. Georgopoulos

Over the past decade, large-scale photogrammetric products have been extensively used for the geometric documentation of cultural heritage monuments, as they combine metric information with the qualities of an image document. Additionally, the rising technology of terrestrial laser scanning has enabled the easier and faster production of accurate digital surface models (DSM), which have in turn contributed to the documentation of heavily textured monuments. However, due to the required accuracy of control points, the photogrammetric methods are always applied in combination with surveying measurements and hence are dependent on them. Along this line of thought, this paper explores the possibility of limiting the surveying measurements and the field work necessary for the production of large-scale photogrammetric products and proposes an alternative method on the basis of which the necessary control points instead of being measured with surveying procedures are chosen from a dense and accurate point cloud. Using this point cloud also as a surface model, the only field work necessary is the scanning of the object and image acquisition, which need not be subject to strict planning. To evaluate the proposed method an algorithm and the complementary interface were produced that allow the parallel manipulation of 3D point clouds and images and through which single image procedures take place. The paper concludes by presenting the results of a case study in the ancient temple of Hephaestus in Athens and by providing a set of guidelines for implementing effectively the method.



Author(s):  
C. Serifoglu ◽  
O. Gungor ◽  
V. Yilmaz

Digital Elevation Model (DEM) generation is one of the leading application areas in geomatics. Since a DEM represents the bare earth surface, the very first step of generating a DEM is to separate the ground and non-ground points, which is called ground filtering. Once the point cloud is filtered, the ground points are interpolated to generate the DEM. LiDAR (Light Detection and Ranging) point clouds have been used in many applications thanks to their success in representing the objects they belong to. Hence, in the literature, various ground filtering algorithms have been reported to filter the LiDAR data. Since the LiDAR data acquisition is still a costly process, using point clouds generated from the UAV images to produce DEMs is a reasonable alternative. In this study, point clouds with three different densities were generated from the aerial photos taken from a UAV (Unmanned Aerial Vehicle) to examine the effect of point density on filtering performance. The point clouds were then filtered by means of five different ground filtering algorithms as Progressive Morphological 1D (PM1D), Progressive Morphological 2D (PM2D), Maximum Local Slope (MLS), Elevation Threshold with Expand Window (ETEW) and Adaptive TIN (ATIN). The filtering performance of each algorithm was investigated qualitatively and quantitatively. The results indicated that the ATIN and PM2D algorithms showed the best overall ground filtering performances. The MLS and ETEW algorithms were found as the least successful ones. It was concluded that the point clouds generated from the UAVs can be a good alternative for LiDAR data.



Author(s):  
T. Ivelja ◽  
B. Bechor ◽  
O. Hasan ◽  
S. Miko ◽  
D. Sivan ◽  
...  

Abstract. Digital Surface Models (DSM) generated by image-based scene reconstruction from Unmanned Aerial Vehicle (UAV) and Terrestrial Laser Scanning (TLS)point clouds are highly distinguished in terms of resolution and accuracy. This leads to a situation where users have to choose the most beneficial product to fulfill their needs. In the current study, these techniques no longer compete but complement each other. Experiments were implemented to verify the improvement of vertical accuracy by introducing different amounts and configurations of Terrestrial Laser scans in the photogrammetric Structure from Motion (SfM) workflow for high-resolution 3D-scene reconstruction. Results show that it is possible to significantly improve (∼ 49% ) the vertical accuracy of DSMs by introducing a TLS point clouds. However, accuracy improvement is highly associated with the number of introduced Ground Control Points (GCP) in the SfM workflow procedure.



Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3179
Author(s):  
Tilen Urbančič ◽  
Žiga Roškar ◽  
Mojca Kosmatin Fras ◽  
Dejan Grigillo

The main goal of our research was to design and implement an innovative target that would be suitable for accurately registering point clouds produced from unmanned aerial vehicle (UAV) images and terrestrial laser scans. Our new target is composed of three perpendicular planes that combine the properties of plane and volume targets. The new target enables the precise determination of reference target points in aerial and terrestrial point clouds. Different types of commonly used plane and volume targets as well as the new target were placed in an established test area in order to evaluate their performance. The targets were scanned from multiple scanner stations and surveyed with an unmanned aerial vehicle DJI Phantom 4 PRO at three different altitudes (20, 40, and 75 m). The reference data were measured with a Leica Nova MS50 MultiStation. Several registrations were performed, each time with a different target. The quality of these registrations was assessed on the check points. The results showed that the new target yielded the best results in all cases, which confirmed our initial expectations. The proposed new target is innovative and not difficult to create and use.



2018 ◽  
Vol 18 (4) ◽  
pp. 1055-1071 ◽  
Author(s):  
Davide Fugazza ◽  
Marco Scaioni ◽  
Manuel Corti ◽  
Carlo D'Agata ◽  
Roberto Sergio Azzoni ◽  
...  

Abstract. Tourists and hikers visiting glaciers all year round face hazards such as sudden terminus collapses, typical of such a dynamically evolving environment. In this study, we analyzed the potential of different survey techniques to analyze hazards of the Forni Glacier, an important geosite located in Stelvio Park (Italian Alps). We carried out surveys in the 2016 ablation season and compared point clouds generated from an unmanned aerial vehicle (UAV) survey, close-range photogrammetry and terrestrial laser scanning (TLS). To investigate the evolution of glacier hazards and evaluate the glacier thinning rate, we also used UAV data collected in 2014 and a digital elevation model (DEM) created from an aerial photogrammetric survey of 2007. We found that the integration between terrestrial and UAV photogrammetry is ideal for mapping hazards related to the glacier collapse, while TLS is affected by occlusions and is logistically complex in glacial terrain. Photogrammetric techniques can therefore replace TLS for glacier studies and UAV-based DEMs hold potential for becoming a standard tool in the investigation of glacier thickness changes. Based on our data sets, an increase in the size of collapses was found over the study period, and the glacier thinning rates went from 4.55 ± 0.24 m a−1 between 2007 and 2014 to 5.20 ± 1.11 m a−1 between 2014 and 2016.



Sign in / Sign up

Export Citation Format

Share Document