scholarly journals PERFORMANCE EVALUATION OF DIFFERENT GROUND FILTERING ALGORITHMS FOR UAV-BASED POINT CLOUDS

Author(s):  
C. Serifoglu ◽  
O. Gungor ◽  
V. Yilmaz

Digital Elevation Model (DEM) generation is one of the leading application areas in geomatics. Since a DEM represents the bare earth surface, the very first step of generating a DEM is to separate the ground and non-ground points, which is called ground filtering. Once the point cloud is filtered, the ground points are interpolated to generate the DEM. LiDAR (Light Detection and Ranging) point clouds have been used in many applications thanks to their success in representing the objects they belong to. Hence, in the literature, various ground filtering algorithms have been reported to filter the LiDAR data. Since the LiDAR data acquisition is still a costly process, using point clouds generated from the UAV images to produce DEMs is a reasonable alternative. In this study, point clouds with three different densities were generated from the aerial photos taken from a UAV (Unmanned Aerial Vehicle) to examine the effect of point density on filtering performance. The point clouds were then filtered by means of five different ground filtering algorithms as Progressive Morphological 1D (PM1D), Progressive Morphological 2D (PM2D), Maximum Local Slope (MLS), Elevation Threshold with Expand Window (ETEW) and Adaptive TIN (ATIN). The filtering performance of each algorithm was investigated qualitatively and quantitatively. The results indicated that the ATIN and PM2D algorithms showed the best overall ground filtering performances. The MLS and ETEW algorithms were found as the least successful ones. It was concluded that the point clouds generated from the UAVs can be a good alternative for LiDAR data.

Author(s):  
C. Serifoglu ◽  
O. Gungor ◽  
V. Yilmaz

Digital Elevation Model (DEM) generation is one of the leading application areas in geomatics. Since a DEM represents the bare earth surface, the very first step of generating a DEM is to separate the ground and non-ground points, which is called ground filtering. Once the point cloud is filtered, the ground points are interpolated to generate the DEM. LiDAR (Light Detection and Ranging) point clouds have been used in many applications thanks to their success in representing the objects they belong to. Hence, in the literature, various ground filtering algorithms have been reported to filter the LiDAR data. Since the LiDAR data acquisition is still a costly process, using point clouds generated from the UAV images to produce DEMs is a reasonable alternative. In this study, point clouds with three different densities were generated from the aerial photos taken from a UAV (Unmanned Aerial Vehicle) to examine the effect of point density on filtering performance. The point clouds were then filtered by means of five different ground filtering algorithms as Progressive Morphological 1D (PM1D), Progressive Morphological 2D (PM2D), Maximum Local Slope (MLS), Elevation Threshold with Expand Window (ETEW) and Adaptive TIN (ATIN). The filtering performance of each algorithm was investigated qualitatively and quantitatively. The results indicated that the ATIN and PM2D algorithms showed the best overall ground filtering performances. The MLS and ETEW algorithms were found as the least successful ones. It was concluded that the point clouds generated from the UAVs can be a good alternative for LiDAR data.


2021 ◽  
Vol 2 ◽  
Author(s):  
Sasha. Z. Leidman ◽  
Åsa K. Rennermalm ◽  
Richard G. Lathrop ◽  
Matthew. G. Cooper

The presence of shadows in remotely sensed images can reduce the accuracy of land surface classifications. Commonly used methods for removing shadows often use multi-spectral image analysis techniques that perform poorly for dark objects, complex geometric models, or shaded relief methods that do not account for shadows cast on adjacent terrain. Here we present a new method of removing topographic shadows using readily available GIS software. The method corrects for cast shadows, reduces the amount of over-correction, and can be performed on imagery of any spectral resolution. We demonstrate this method using imagery collected with an uncrewed aerial vehicle (UAV) over a supraglacial stream catchment in southwest Greenland. The structure-from-motion digital elevation model showed highly variable topography resulting in substantial shadowing and variable reflectance values for similar surface types. The distribution of bare ice, sediment, and water within the catchment was determined using a supervised classification scheme applied to the corrected and original UAV images. The correction resulted in an insignificant change in overall classification accuracy, however, visual inspection showed that the corrected classification more closely followed the expected distribution of classes indicating that shadow correction can aid in identification of glaciological features hidden within shadowed regions. Shadow correction also caused a substantial decrease in the areal coverage of dark sediment. Sediment cover was highly dependent on the degree of shadow correction (k coefficient), yet, for a correction coefficient optimized to maximize shadow brightness without over-exposing illuminated surfaces, terrain correction resulted in a 49% decrease in the area covered by sediment and a 29% increase in the area covered by water. Shadow correction therefore reduces the overestimation of the dark surface coverage due to shadowing and is a useful tool for investigating supraglacial processes and land cover change over a wide variety of complex terrain.


Author(s):  
A. İ. Durmaz

DEM (Digital Elevation Models) is the best way to interpret topography on the ground. In recent years, lidar technology allows to create more accurate elevation models. However, the problem is this technology is not common all over the world. Also if Lidar data are not provided by government agencies freely, people have to pay lots of money to reach these point clouds. In this article, we will discuss how we can create digital elevation model from less accurate mobile devices’ GPS data. Moreover, we will evaluate these data on the same mobile device which we collected data to reduce cost of this modeling.


OENO One ◽  
2016 ◽  
Vol 50 (3) ◽  
Author(s):  
Léo Pichon ◽  
Arnaud Ducanchez ◽  
Hélène Fonta ◽  
Bruno Tisseyre

<p style="text-align: justify;"><strong>Aims:</strong> This work aims to study the quality of low cost Digital Surface Models (DSMs) obtained with Unmanned Aerial Vehicle (UAV) images and to test whether these DSMs meet common requirements of the wine industry.</p><p style="text-align: justify;"><strong>Methods and results: </strong>Experiments were carried out on a 4-ha vineyard located 10 km north of Beziers (France). The experimental site presents slope and aspect variations representative of mechanised commercial vineyards in Languedoc Roussillon. DSMs were provided by three UAV companies selected for the diversity of their solutions in terms of image capture altitude, type of UAV and image processing software. DSMs were obtained by photogrammetry and correspond to commercial products usually delivered by UAV companies. DSMs from UAV were compared to a reference Digital Elevation Model (DEM) acquired by a laser tachymeter. Four indicators were used to test the quality of DSMs: the mean error and its dispersion in the XY plane and in elevation Z. Results show a good georeferencing of the DSMs (MeanErrorXY&lt;10 cm) and a similar quality in elevation (MeanErrorZ&lt;10 cm) estimation. Results also show that the error in elevation is highly spatially structured. The spatial patterns observed did not depend on the elevation and could be related to algorithms used to compute the DSMs.</p><p style="text-align: justify;"><strong>Conclusion: </strong>Data acquisition and processing methods have an impact on the quality of the DSMs provided by the UAV companies. DSM qualities are good enough to meet commercial vineyard requirements. The tested DSMs fit the requirements to assess field characteristics (elevation, slope, aspects) which may be important for terroir characterisation purposes.</p><p style="text-align: justify;"><strong>Significance and impact of the study:</strong> This study proves that elevation data derived from UAV present an accuracy equivalent to the reference system used in this study. The rapidity, the low cost and the high spatial resolution of these data offer significant opportunities for the development of new services for the wine industry for field characterisation.</p>


2019 ◽  
Vol 1 ◽  
pp. 1-7
Author(s):  
Klemen Kozmus Trajkovski ◽  
Gašper Štebe ◽  
Dušan Petrovič

<p><strong>Abstract.</strong> Our research is based on a large case study of Unmanned Aerial Vehicle (UAV) surveys, modelling and visualizations of the Doblar accumulation basin. The various approaches for UAV surveying of large, demanding terrain configurations, and the benefits of surveying products used as a basis for other interdisciplinary hydrological and environmental services were researched. The demanding mountainous terrain, the steep slopes and deep and narrow streams required detailed pre-planning of the survey, including the pre-survey terrain overview. The accumulation basin was emptied merely for a short period; thus, the survey was performed in unfavourable weather conditions, which included coldness, snowfall and wind. Point clouds were generated and georeferenced from the 4377 recorded photos. The dense point cloud contained approximately 222 million points in the medium setting and more than a billion in the high setting. A 3D model was built from the data. This became the basis for numerous further analyses and for the presentation using cartographic principles: a digital elevation model with a resolution of 10&amp;thinsp;cm, an orthophoto with a resolution of 10&amp;thinsp;cm, a 3D model draped with orthophoto, contour lines with a 1&amp;thinsp;m interval, topographic profiles, calculations of volumes at different water levels, a flythrough, augmented reality and a video simulation of the water level changes. The model can also serve as a basis for hydraulic and environmental analysis and simulations or used for analyses of the accumulation and deposition of river material compared with previous and future surveys.</p>


2019 ◽  
Vol 11 (10) ◽  
pp. 1188
Author(s):  
Li Zheng ◽  
Yuhao Li ◽  
Meng Sun ◽  
Zheng Ji ◽  
Manzhu Yu ◽  
...  

VLS (Vehicle-borne Laser Scanning) can easily scan the road surface in the close range with high density. UAV (Unmanned Aerial Vehicle) can capture a wider range of ground images. Due to the complementary features of platforms of VLS and UAV, combining the two methods becomes a more effective method of data acquisition. In this paper, a non-rigid method for the aerotriangulation of UAV images assisted by a vehicle-borne light detection and ranging (LiDAR) point cloud is proposed, which greatly reduces the number of control points and improves the automation. We convert the LiDAR point cloud-assisted aerotriangulation into a registration problem between two point clouds, which does not require complicated feature extraction and match between point cloud and images. Compared with the iterative closest point (ICP) algorithm, this method can address the non-rigid image distortion with a more rigorous adjustment model and a higher accuracy of aerotriangulation. The experimental results show that the constraint of the LiDAR point cloud ensures the high accuracy of the aerotriangulation, even in the absence of control points. The root-mean-square error (RMSE) of the checkpoints on the x, y, and z axes are 0.118 m, 0.163 m, and 0.084m, respectively, which verifies the reliability of the proposed method. As a necessary condition for joint mapping, the research based on VLS and UAV images in uncontrolled circumstances will greatly improve the efficiency of joint mapping and reduce its cost.


2012 ◽  
Vol 226-228 ◽  
pp. 1892-1898
Author(s):  
Jian Qing Shi ◽  
Ting Chen Jiang ◽  
Ming Lian Jiao

Airborne LiDAR is a new kind of surveying technology of remote sensing which developed rapidly during recent years. Raw laser scanning point clouds data include terrain points, building points, vegetation points, outlier points, etc.. In order to generate digital elevation model (DEM) and three-dimensional city model,these point clouds data must be filtered. Mathematical morphology based filtering algorithm, slope based filtering algorithm, TIN based filtering algorithm, moving surface based filtering algorithm, scanning lines based filtering algorithm and so on several representative filtering algorithms for LiDAR point clouds data have been introduced and discussed and contrasted in this paper. Based on these algorithms summarize the studying progresss about the filtering algorithm of airborne LiDAR point clouds data in home and abroad. In the end, the paper gives an expectation which will provides a reference for the following relative study.


2018 ◽  
Vol 18 (4) ◽  
pp. 1055-1071 ◽  
Author(s):  
Davide Fugazza ◽  
Marco Scaioni ◽  
Manuel Corti ◽  
Carlo D'Agata ◽  
Roberto Sergio Azzoni ◽  
...  

Abstract. Tourists and hikers visiting glaciers all year round face hazards such as sudden terminus collapses, typical of such a dynamically evolving environment. In this study, we analyzed the potential of different survey techniques to analyze hazards of the Forni Glacier, an important geosite located in Stelvio Park (Italian Alps). We carried out surveys in the 2016 ablation season and compared point clouds generated from an unmanned aerial vehicle (UAV) survey, close-range photogrammetry and terrestrial laser scanning (TLS). To investigate the evolution of glacier hazards and evaluate the glacier thinning rate, we also used UAV data collected in 2014 and a digital elevation model (DEM) created from an aerial photogrammetric survey of 2007. We found that the integration between terrestrial and UAV photogrammetry is ideal for mapping hazards related to the glacier collapse, while TLS is affected by occlusions and is logistically complex in glacial terrain. Photogrammetric techniques can therefore replace TLS for glacier studies and UAV-based DEMs hold potential for becoming a standard tool in the investigation of glacier thickness changes. Based on our data sets, an increase in the size of collapses was found over the study period, and the glacier thinning rates went from 4.55 ± 0.24 m a−1 between 2007 and 2014 to 5.20 ± 1.11 m a−1 between 2014 and 2016.


Author(s):  
M. Yadav ◽  
A. K. Singh ◽  
B. Lohani

<p><strong>Abstract.</strong> High quality digital elevation model (DEM) is obtained from mobile LiDAR data and it is used in various applications like road widening, slope measurement of road side surfaces, and inundation of the roadway evaluation. Two steps algorithm is proposed to filter ground points using mobile LiDAR data. Initially unstructured input data is organized then standard deviation and flatness based approach is used to filter ground points. Proposed algorithm is tested on point cloud of test site located along 800<span class="thinspace"></span>m of roadway. Type I, Type II and total error are 2.11%, 2.21% and 2.15%, respectively with kappa is equal to 96.61% are computed using ground filtered points and reference data points.</p>


Author(s):  
H. Enayati ◽  
M. Veissy ◽  
F. Rahimpour

Digital elevation model is one of the most important spatial information for displaying bare earth. Because of existing objects on the ground, manual editing is unavoidable. Aerial images’ point clouds produced by advanced matching methods are good resources for generating DEM. In this paper, the purpose is design a filter for detect and eliminate vegetation from point clouds. For this purpose, point clouds’ texture is used for finding vegetation. Texture of point clouds is segmented by Otsu method. In the next step, segmented image is added to raster of elevation and vegetation elevation is detected. Results is showing that point clouds’ texture is a good data for filtering vegetation and generating DEM automatically.


Sign in / Sign up

Export Citation Format

Share Document