scholarly journals Detecting Power Lines in UAV Images with Convolutional Features and Structured Constraints

2019 ◽  
Vol 11 (11) ◽  
pp. 1342 ◽  
Author(s):  
Heng Zhang ◽  
Wen Yang ◽  
Huai Yu ◽  
Haijian Zhang ◽  
Gui-Song Xia

Power line detection plays an important role in an automated UAV-based electricity inspection system, which is crucial for real-time motion planning and navigation along power lines. Previous methods which adopt traditional filters and gradients may fail to capture complete power lines due to noisy backgrounds. To overcome this, we develop an accurate power line detection method using convolutional and structured features. Specifically, we first build a convolutional neural network to obtain hierarchical responses from each layer. Simultaneously, the rich feature maps are integrated to produce a fusion output, then we extract the structured information including length, width, orientation and area from the coarsest feature map. Finally, we combine the fusion output with structured information to get a result with clear background. The proposed method fully exploits multiscale and structured prior information to conduct both accurate and efficient detection. In addition, we release two power line datasets due to the scarcity in the public domain. The method is evaluated on the well-annotated power line datasets and achieves competitive performance compared with state-of-the-art methods.

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Qingwu Li ◽  
Yunpeng Ma ◽  
Feijia He ◽  
Shuya Xi ◽  
Jinxin Xu

Detecting the threats of the external obstacles to the power lines can ensure the stability of the power system. Inspired by the attention mechanism and binocular vision of human visual system, an intelligent power line inspection system is presented in this paper. Human visual attention mechanism in this intelligent inspection system is used to detect and track power lines in image sequences according to the shape information of power lines, and the binocular visual model is used to calculate the 3D coordinate information of obstacles and power lines. In order to improve the real time and accuracy of the system, we propose a new matching strategy based on the traditional SURF algorithm. The experimental results show that the system is able to accurately locate the position of the obstacles around power lines automatically, and the designed power line inspection system is effective in complex backgrounds, and there are no missing detection instances under different conditions.


Author(s):  
Qirong Ma ◽  
Darren S. Goshi ◽  
Long Bui ◽  
Ming-Ting Sun

In this paper, we propose a tracking algorithm to detect power lines from millimeter-wave radar video. We propose a general framework of cascaded particle filters which can naturally capture the temporal correlation of the power line objects, and the power-line-specific feature is embedded into the conditional likelihood measurement process of the particle filter. Because of the fusion of multiple information sources, power line detection is more effective than the previous approach. Both the accuracy and the recall of power line detection are improved from around 68% to over 92%.


Author(s):  
W. W. Pan ◽  
Y. J. Dou ◽  
G. L. Wang ◽  
M. X. Wu ◽  
R. G. Ren ◽  
...  

This paper introduces a compact LIDAR system designed to inspect overhead transmission line for maintenance purposes. This LIDAR system is carried by a small unmanned helium airship, which is guided by GPS and laser ranging to fly automatically along the power-line over a limited distance. The 3D coordinates of the power line, power tower and power line channel features are gathered by LIDAR. Test have been accomplished using this blimp-based compact LIDAR power-line inspection system. Its inspections of a 500kV power lines also shows the high efficient inspection, less risk to personnel and more inspections per day compared with manual inspection.


2020 ◽  
Vol 12 (22) ◽  
pp. 3698
Author(s):  
Elżbieta Pastucha ◽  
Edyta Puniach ◽  
Agnieszka Ścisłowicz ◽  
Paweł Ćwiąkała ◽  
Witold Niewiem ◽  
...  

Regular power line inspections are essential to ensure the reliability of electricity supply. The inspections of overground power submission lines include corridor clearance monitoring and fault identification. The power lines corridor is a three-dimensional space around power cables defined by a set distance. Any obstacles breaching this space should be detected, as they potentially threaten the safety of the infrastructure. Corridor clearance monitoring is usually performed either by a labor-intensive total station survey (TS), terrestrial laser scanning (TLS), or expensive airborne laser scanning (ALS) from a plane or a helicopter. This paper proposes a method that uses unmanned aerial vehicle (UAV) images to monitor corridor clearance. To maintain the adequate accuracy of the relative position of wires in regard to surrounding obstacles, the same data were used both to reconstruct a point cloud representation of a digital surface model (DSM) and a 3D power line. The proposed algorithm detects power lines in a series of images using decorrelation stretch for initial image processing, the modified Prewitt filter for edge enhancement, random sample consensus (RANSAC) with additional parameters for line fitting, and epipolar geometry for 3D reconstruction. DSM points intruding into the corridor are then detected by calculating the spatial distance between a reconstructed power line and the DSM point cloud representation. Problematic objects are localized by segmenting points into voxels and then subsequent clusterization. The processing results were compared to the results of two verification methods—TS and TLS. The comparison results show that the proposed method can be used to survey power lines with an accuracy consistent with that of classical measurements.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3855
Author(s):  
Arturo Popoli ◽  
Leonardo Sandrolini ◽  
Andrea Cristofolini

In this paper, a strategy for reducing the electromagnetic interferences induced by power lines on metallic pipelines is proposed and numerically investigated. The study considers a set of steel conductors interposed between the power line and the pipeline. Different shapes of conductor cross sections and different magnetic permeabilities are considered, to identify the solution exhibiting the greatest mitigation efficiency for the same amount of material. The investigation is carried out by means of a quasi-3D finite element analysis. Results show that the main mechanism responsible for the mitigation is constituted by the currents induced in the screening conductors by the power line. Hence, a high magnetic permeability can have a detrimental effect since it reduces the skin depth to values below the size of the screening conductor. In this case, a reduction of the screening current and in the mitigation efficiency is observed. Nevertheless, the study shows that the use of strip-shaped screening conductors allows the employment of cheaper magnetic materials without compromising the mitigation efficacy of the screening conductors.


Risk Analysis ◽  
2017 ◽  
Vol 37 (12) ◽  
pp. 2276-2288 ◽  
Author(s):  
Jarry T. Porsius ◽  
Liesbeth Claassen ◽  
Fred Woudenberg ◽  
Tjabe Smid ◽  
Danielle R. M. Timmermans
Keyword(s):  

2021 ◽  
Vol 11 (2) ◽  
pp. 492
Author(s):  
Levente Rácz ◽  
Bálint Németh

Exceeding the electric field’s limit value is not allowed in the vicinity of high-voltage power lines because of both legal and safety aspects. The design parameters of the line must be chosen so that such cases do not occur. However, analysis of several operating power lines in Europe found that the electric field strength in many cases exceeds the legally prescribed limit for the general public. To illustrate this issue and its importance, field measurement and finite element simulation results of the low-frequency electric field are presented for an active 400 kV power line. The purpose of this paper is to offer a new, economical expert system based on dynamic line rating (DLR) that utilizes the potential of real-time power line monitoring methods. The article describes the expert system’s strengths and benefits from both technical and financial points of view, highlighting DLR’s potential for application. With our proposed expert system, it is possible to increase a power line’s safety and security by ensuring that the electric field does not exceed its limit value. In this way, the authors demonstrate that DLR has other potential applications in addition to its capacity-increasing effect in the high voltage grid.


Sign in / Sign up

Export Citation Format

Share Document