scholarly journals Quantification of Hydrocarbon Abundance in Soils Using Deep Learning with Dropout and Hyperspectral Data

2019 ◽  
Vol 11 (16) ◽  
pp. 1938 ◽  
Author(s):  
Asmau M. Ahmed ◽  
Olga Duran ◽  
Yahya Zweiri ◽  
Mike Smith

Terrestrial hydrocarbon spills have the potential to cause significant soil degradation across large areas. Identification and remedial measures taken at an early stage are therefore important. Reflectance spectroscopy is a rapid remote sensing method that has proven capable of characterizing hydrocarbon-contaminated soils. In this paper, we develop a deep learning approach to estimate the amount of Hydrocarbon (HC) mixed with different soil samples using a three-term backpropagation algorithm with dropout. The dropout was used to avoid overfitting and reduce computational complexity. A Hyspex SWIR 384 m camera measured the reflectance of the samples obtained by mixing and homogenizing four different soil types with four different HC substances, respectively. The datasets were fed into the proposed deep learning neural network to quantify the amount of HCs in each dataset. Individual validation of all the dataset shows excellent prediction estimation of the HC content with an average mean square error of ~ 2 . 2 × 10 - 4 . The results with remote sensed data captured by an airborne system validate the approach. This demonstrates that a deep learning approach coupled with hyperspectral imaging techniques can be used for rapid identification and estimation of HCs in soils, which could be useful in estimating the quantity of HC spills at an early stage.

2021 ◽  
Author(s):  
Md Abu Rumman Refat ◽  
Md. Al Amin ◽  
Chetna Kaushal ◽  
Mst Nilufa Yeasmin ◽  
Md Khairul Islam

2020 ◽  
Vol 34 (5) ◽  
pp. 601-606
Author(s):  
Tulasi Krishna Sajja ◽  
Hemantha Kumar Kalluri

Heart disease is a very deadly disease. Worldwide, the majority of people are suffering from this problem. Many Machine Learning (ML) approaches are not sufficient to forecast the disease caused by the virus. Therefore, there is a need for one system that predicts disease efficiently. The Deep Learning approach predicts the disease caused by the blocked heart. This paper proposes a Convolutional Neural Network (CNN) to predict the disease at an early stage. This paper focuses on a comparison between the traditional approaches such as Logistic Regression, K-Nearest Neighbors (KNN), Naïve Bayes (NB), Support Vector Machine (SVM), Neural Networks (NN), and the proposed prediction model of CNN. The UCI machine learning repository dataset for experimentation and Cardiovascular Disease (CVD) predictions with 94% accuracy.


2021 ◽  
Author(s):  
Ao Yang ◽  
Yang Su ◽  
Zihao Wang ◽  
Saimeng Jin ◽  
Jingzheng Ren ◽  
...  

It is significant that the hazardous properties of chemicals including replacements for banned or restricted products are assessed at an early stage of product and process design. This work proposes...


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 748
Author(s):  
Mehedi Masud ◽  
Niloy Sikder ◽  
Abdullah-Al Nahid ◽  
Anupam Kumar Bairagi ◽  
Mohammed A. AlZain

The field of Medicine and Healthcare has attained revolutionary advancements in the last forty years. Within this period, the actual reasons behind numerous diseases were unveiled, novel diagnostic methods were designed, and new medicines were developed. Even after all these achievements, diseases like cancer continue to haunt us since we are still vulnerable to them. Cancer is the second leading cause of death globally; about one in every six people die suffering from it. Among many types of cancers, the lung and colon variants are the most common and deadliest ones. Together, they account for more than 25% of all cancer cases. However, identifying the disease at an early stage significantly improves the chances of survival. Cancer diagnosis can be automated by using the potential of Artificial Intelligence (AI), which allows us to assess more cases in less time and cost. With the help of modern Deep Learning (DL) and Digital Image Processing (DIP) techniques, this paper inscribes a classification framework to differentiate among five types of lung and colon tissues (two benign and three malignant) by analyzing their histopathological images. The acquired results show that the proposed framework can identify cancer tissues with a maximum of 96.33% accuracy. Implementation of this model will help medical professionals to develop an automatic and reliable system capable of identifying various types of lung and colon cancers.


2018 ◽  
Vol 6 (3) ◽  
pp. 122-126
Author(s):  
Mohammed Ibrahim Khan ◽  
◽  
Akansha Singh ◽  
Anand Handa ◽  
◽  
...  

2020 ◽  
Vol 17 (3) ◽  
pp. 299-305 ◽  
Author(s):  
Riaz Ahmad ◽  
Saeeda Naz ◽  
Muhammad Afzal ◽  
Sheikh Rashid ◽  
Marcus Liwicki ◽  
...  

This paper presents a deep learning benchmark on a complex dataset known as KFUPM Handwritten Arabic TexT (KHATT). The KHATT data-set consists of complex patterns of handwritten Arabic text-lines. This paper contributes mainly in three aspects i.e., (1) pre-processing, (2) deep learning based approach, and (3) data-augmentation. The pre-processing step includes pruning of white extra spaces plus de-skewing the skewed text-lines. We deploy a deep learning approach based on Multi-Dimensional Long Short-Term Memory (MDLSTM) networks and Connectionist Temporal Classification (CTC). The MDLSTM has the advantage of scanning the Arabic text-lines in all directions (horizontal and vertical) to cover dots, diacritics, strokes and fine inflammation. The data-augmentation with a deep learning approach proves to achieve better and promising improvement in results by gaining 80.02% Character Recognition (CR) over 75.08% as baseline.


Sign in / Sign up

Export Citation Format

Share Document