scholarly journals Environmental Differences between Migratory and Resident Ungulates—Predicting Movement Strategies in Rocky Mountain Mule Deer (Odocoileus hemionus) with Remotely Sensed Plant Phenology, Snow, and Land Cover

2019 ◽  
Vol 11 (17) ◽  
pp. 1980
Author(s):  
Benjamin Robb ◽  
Qiongyu Huang ◽  
Joseph Sexton ◽  
David Stoner ◽  
Peter Leimgruber

Migration is a valuable life history strategy for many species because it enables individuals to exploit spatially and temporally variable resources. Globally, the prevalence of species’ migratory behavior is decreasing as individuals forgo migration to remain resident year-round, an effect hypothesized to result from anthropogenic changes to landscape dynamics. Efforts to conserve and restore migrations require an understanding of the ecological characteristics driving the behavioral tradeoff between migration and residence. We identified migratory and resident behaviors of 42 mule deer (Odocoileus hemionus) based on GPS locations and correlated their locations to remotely sensed indicators of forage quality, land cover, snow cover, and human land use. The model classified mule deer seasonal migratory and resident niches with an overall accuracy of 97.8% and cross-validated accuracy of 81.2%. The distance to development was the most important variable in discriminating in which environments these behaviors occur, with resident niche space most often closer to developed areas than migratory niches. Additionally, snow cover in December was important for discriminating summer migratory niches. This approach demonstrates the utility of niche analysis based on remotely sensed environmental datasets and provides empirical evidence of human land use impacts on large-scale wildlife migrations.

2014 ◽  
pp. 269-283 ◽  
Author(s):  
Mohamed S. Dafalla ◽  
Elfatih M. Abdel-Rahman ◽  
Khalid H. A. Siddig ◽  
Ibrahim S. Ibrahim ◽  
Elmar Csaplovics

<i>Abstract.</i>—Surrounding land use and cover can have profound effects on the physical, chemical, and biological properties of stream ecosystems. For this reason, changes in land use and cover throughout catchments often have strong effects on stream ecosystems that are particularly interesting to researchers. Additionally, natural physical and climatic, or physiographic, characteristics are important for determining natural land cover and constraining human land use and are also strongly related to stream habitat and biota. Because the physiographic template differs among catchments and is an important mediator of catchment processes, it is important to account for natural physiographic differences among catchments to understand the relationship between land use/cover and stream biota. In this paper, we develop and assess the usefulness of a regional framework, land use/cover distinguished physiographic regions (LDPRs), which is designed for understanding relationships between land use/cover and stream biota while accounting for the physiographic template. We classified hydrologic units into LDPRs based on physiographic predictors of land use and cover for the eastern and western United States through the use of multivariate regression tree analysis. Next, we used case study data to assess the usefulness of LDPRs by determining if the relationships between fish assemblage function and land use/cover varied among classes using hierarchical logistic regression models. Eight physiographic characteristics determined land cover patterns for both the eastern and western United States and were used to classify hydrologic units into LDPR classes. Five commonly used biotic metrics describing trophic, reproductive, and taxonomic groupings of fish species responded in varying ways to agriculture and urban land use across LDPRs in the upper Mississippi River basin. Our findings suggest that physiographic differences among hydrologic units result in different pathways by which land use and cover affects stream fish assemblages and that LDPRs are useful for stratifying hydrologic units to investigate those different processes. Unlike other commonly used regional frameworks, the rationale and methods used to develop LDPRs properly account for the often-confounded relationship between physiography and land use/cover when relating land cover to stream biota. Therefore, we recommend the use and refinement of LDPRs or similarly developed regional frameworks so that the varying processes by which human land use results in stream degradation can be better understood.


Author(s):  
Ned Horning ◽  
Julie A. Robinson ◽  
Eleanor J. Sterling ◽  
Woody Turner ◽  
Sacha Spector

In terrestrial biomes, ecologists and conservation biologists commonly need to understand vegetation characteristics such as structure, primary productivity, and spatial distribution and extent. Fortunately, there are a number of airborne and satellite sensors capable of providing data from which you can derive this information. We will begin this chapter with a discussion on mapping land cover and land use. This is followed by text on monitoring changes in land cover and concludes with a section on vegetation characteristics and how we can measure these using remotely sensed data. We provide a detailed example to illustrate the process of creating a land cover map from remotely sensed data to make management decisions for a protected area. This section provides an overview of land cover classification using remotely sensed data. We will describe different options for conducting land cover classification, including types of imagery, methods and algorithms, and classification schemes. Land cover mapping is not as difficult as it may appear, but you will need to make several decisions, choices, and compromises regarding image selection and analysis methods. Although it is beyond the scope of this chapter to provide details for all situations, after reading it you will be able to better assess your own needs and requirements. You will also learn the steps to carry out a land cover classification project while gaining an appreciation for the image classification process. That said, if you lack experience with land cover mapping, it always wise to seek appropriate training and, if possible, collaborate with someone who has land cover mapping experience (Section 2.3). Although the terms “land cover” and “land use” are sometimes used interchangeably they are different in important ways. Simply put, land cover is what covers the surface of the Earth and land use describes how people use the land (or water). Examples of land cover classes are: water, snow, grassland, deciduous forest, or bare soil.


Ecosystems ◽  
2019 ◽  
Vol 23 (5) ◽  
pp. 1056-1074
Author(s):  
Bethany J. Blakely ◽  
Adrian V. Rocha ◽  
Jason S. McLachalan

AbstractAnthropogenic land use affects climate by altering the energy balance of the Earth’s surface. In temperate regions, cooling from increased albedo is a common result of historical land-use change. However, this albedo cooling effect is dependent mainly on the exposure of snow cover following forest canopy removal and may change over time due to simultaneous changes in both land cover and snow cover. In this paper, we combine modern remote sensing data and historical records, incorporating over 100 years of realized land use and climatic change into an empirical assessment of centennial-scale surface forcings in the Upper Midwestern USA. We show that, although increases in surface albedo cooled through strong negative shortwave forcings, those forcings were reduced over time by a combination of forest regrowth and snow-cover loss. Deforestation cooled strongly (− 5.3 Wm−2) and mainly in winter, while composition shift cooled less strongly (− 3.03 Wm−2) and mainly in summer. Combined, changes in albedo due to deforestation, shifts in species composition, and the return of historical forest cover resulted in − 2.81 Wm−2 of regional radiative cooling, 55% less than full deforestation. Forcings due to changing vegetation were further reduced by 0.32 Wm−2 of warming from a shortened snow-covered season and a thinning of seasonal snowpack. Our findings suggest that accounting for long-term changes in land cover and snow cover reduces the estimated cooling impact of deforestation, with implications for long-term land-use planning.


2011 ◽  
Vol 31 (3) ◽  
pp. 1166-1172 ◽  
Author(s):  
Fatih Evrendilek ◽  
Suha Berberoglu ◽  
Nusret Karakaya ◽  
Ahmet Cilek ◽  
Guler Aslan ◽  
...  

2012 ◽  
Vol 518-523 ◽  
pp. 1371-1374
Author(s):  
Chu La Sa ◽  
Gui Xiang Liu ◽  
Mu Lan Wang

In the study we mapped and analyzed the land use/cover changes in Zheng Lanqi county by visual interpreting the 3 sets of Landsat TM and ETM remotely sensed images received in 1990, 2000 and 2005.The 6 broad types of land use/ cover were interpreted for the study area. Through analyzing land use/cover changes, our study indicated that the grassland and built-up area is dominant landscape in the study area.The grassland in the study area shrank 588.68km2 for urbanization and farmland cultivation for first periods. The unchanged land is 10639.75km2 and 10743.18km2 for the two periods (1990-2000 and 2000-2005), respectively. This indicated that the landscape conversion in second period became stable than that of first period, and environment is improved since 2000.


Sign in / Sign up

Export Citation Format

Share Document