scholarly journals The Influence of Vegetation Characteristics on Individual Tree Segmentation Methods with Airborne LiDAR Data

2019 ◽  
Vol 11 (23) ◽  
pp. 2880 ◽  
Author(s):  
Qiuli Yang ◽  
Yanjun Su ◽  
Shichao Jin ◽  
Maggi Kelly ◽  
Tianyu Hu ◽  
...  

This study investigated the effects of forest type, leaf area index (LAI), canopy cover (CC), tree density (TD), and the coefficient of variation of tree height (CVTH) on the accuracy of different individual tree segmentation methods (i.e., canopy height model, pit-free canopy height model (PFCHM), point cloud, and layer stacking seed point) with LiDAR data. A total of 120 sites in the Sierra Nevada Forest (California) and Shavers Creek Watershed (Pennsylvania) of the United States, covering various vegetation types and characteristics, were used to analyze the performance of the four selected individual tree segmentation algorithms. The results showed that the PFCHM performed best in all forest types, especially in conifer forests. The main forest characteristics influencing segmentation methods were LAI and CC, LAI and TD, and CVTH in conifer, broadleaf, and mixed forests, respectively. Most of the vegetation characteristics (i.e., LAI, CC, and TD) negatively correlated with all segmentation methods, while the effect of CVTH varied with forest type. These results can help guide the selection of individual tree segmentation method given the influence of vegetation characteristics.

2021 ◽  
Vol 13 (12) ◽  
pp. 2239
Author(s):  
Ying Quan ◽  
Mingze Li ◽  
Yuanshuo Hao ◽  
Bin Wang

As a common form of light detection and ranging (LiDAR) in forestry applications, the canopy height model (CHM) provides the elevation distribution of aboveground vegetation. A CHM is traditionally generated by interpolating all the first LiDAR echoes. However, the first echo cannot accurately represent the canopy surface, and the resulting large amount of noise (data pits) also reduce the CHM quality. Although previous studies concentrate on many pit-filling methods, the applicability of these methods in high-resolution unmanned aerial vehicle laser scanning (UAVLS)-derived CHMs has not been revealed. This study selected eight widely used, recently developed, representative pit-filling methods, namely first-echo interpolation, smooth filtering (mean, medium and Gaussian), highest point interpolation, pit-free algorithm, spike-free algorithm and graph-based progressive morphological filtering (GPMF). A comprehensive evaluation framework was implemented, including a quantitative evaluation using simulation data and an additional application evaluation using UAVLS data. The results indicated that the spike-free algorithm and GPMF had excellent visual performances and were closest to the real canopy surface (root mean square error (RMSE) of simulated data were 0.1578 m and 0.1093 m, respectively; RMSE of UAVLS data were 0.3179 m and 0.4379 m, respectively). Compared with the first-echo method, the accuracies of the spike-free algorithm and GPMF improved by approximately 23% and 22%, respectively. The pit-free algorithm and highest point interpolation method also have advantages in high-resolution CHM generation. The global smooth filter method based on the first-echo CHM reduced the average canopy height by approximately 7.73%. Coniferous forests require more pit-filling than broad-leaved forests and mixed forests. Although the results of individual tree applications indicated that there was no significant difference between these methods except the median filter method, pit-filling is still of great significance for generating high-resolution CHMs. This study provides guidance for using high-resolution UAVLS in forestry applications.


2017 ◽  
Vol 11 (2) ◽  
pp. 89-95
Author(s):  
Casiana Marcu ◽  
Florian Stătescu ◽  
Nicoleta Iurist

Abstract Lidar has provided significant benefits for forest development and engineering operations and provides a good means to collect information on forest stands. A common analysis using LiDAR data computes the CHM as a difference between DSM and DTM, create a DTM from the ground returns and a DSM from the first returns and subtract the two rasters, but how exactly are generated the DTM and the DSM. Irregular height variations, called data pits are present in the CHM and appear when the first Lidar return is far below the canopy. The purpose of this study is an approach that computes the CHM directly from height-normalized LiDAR points.


2020 ◽  
Author(s):  
Edoardo Alterio ◽  
Andrea Rizzi ◽  
Paolo Fogliata ◽  
Niccolò Marchi ◽  
Alessio Cislaghi ◽  
...  

<p>Protection from landslides is one of the most important regulating services provided by forest ecosystems. Tree roots provide an increase in tensile strength, compression and shear resistance, compared to that uniquely due to the soil properties. This additional effect is known as root reinforcement. The degree of soil reinforcement given by roots have been modeled using laboratory and field data. The great spatial and temporal variability of root distribution is one of the main sources of uncertainty for the development of accurate and reliable models to quantify root reinforcement. The relative importance of stand structure remains poorly known. Here, we analyze the relationships between observed stand structure from a sample of spruce, beech, chestnut and mixed stands of the Southeastern Alps, and a spatially explicit model of root reinforcement. Data were collected in 20-m radius sampling units inclined 15-40° and covered by a low-resolution airborne LiDAR-derived canopy height model. Tree size and position were used to calculate root reinforcement through commonly used and calibrated models. Then, we studied the relationships between root reinforcement, stand structural indexes and area-based stand metrics from canopy height model. In specific conditions, the three groups of variables were correlated. Therefore, root reinforcement values might be spatially extrapolated through available canopy height models. Final step is to integrate the extrapolated values into a landslide susceptibility model, which combines other data available from forest plans, digital elevation models, geological and meteorological data. This study provides managers with a tool to periodically update maps of the service given by forest trees to protection of humans from landslides.</p>


2021 ◽  
Vol 13 (14) ◽  
pp. 2763
Author(s):  
Rafaela B. Salum ◽  
Sharon A. Robinson ◽  
Kerrylee Rogers

LiDAR data and derived canopy height models can provide useful information about mangrove tree heights that assist with quantifying mangrove above-ground biomass. This study presents a validated method for quantifying mangrove heights using LiDAR data and calibrating this against plot-based estimates of above-ground biomass. This approach was initially validated for the mangroves of Darwin Harbour, in Northern Australia, which are structurally complex and have high species diversity. Established relationships were then extrapolated to the nearby West Alligator River, which provided the opportunity to quantify biomass at a remote location where intensive fieldwork was limited. Relationships between LiDAR-derived mangrove heights and mean tree height per plot were highly robust for Ceriops tagal, Rhizophora stylosa and Sonneratia alba (r2 = 0.84–0.94, RMSE = 0.03–0.91 m; RMSE% = 0.07%–11.27%), and validated well against an independent dataset. Additionally, relationships between the derived canopy height model and field-based estimates of above-ground biomass were also robust and validated (r2 = 0.73–0.90, RMSE = 141.4 kg–1098.58 kg, RMSE% of 22.94–39.31%). Species-specific estimates of tree density per plot were applied in order to align biomass of individual trees with the resolution of the canopy height model. The total above-ground biomass at Darwin Harbour was estimated at 120 t ha−1 and comparisons with prior estimates of mangrove above-ground biomass confirmed the accuracy of this assessment. To establish whether accurate and validated relationships could be extrapolated elsewhere, the established relationships were applied to a LiDAR-derived canopy height model at nearby West Alligator River. Above-ground biomass derived from extrapolated relationships was estimated at 206 t ha−1, which compared well with prior biomass estimates, confirming that this approach can be extrapolated to remote locations, providing the mangrove forests are biogeographically similar. The validated method presented in this study can be used for reporting mangrove carbon storage under national obligations, and is useful for quantifying carbon within various markets.


Author(s):  
R. J. L. Argamosa ◽  
E. C. Paringit ◽  
K. R. Quinton ◽  
F. A. M. Tandoc ◽  
R. A. G. Faelga ◽  
...  

The generation of high resolution canopy height model (CHM) from LiDAR makes it possible to delineate individual tree crown by means of a fully-automated method using the CHM’s curvature through its slope. The local maxima are obtained by taking the maximum raster value in a 3 m x 3 m cell. These values are assumed as tree tops and therefore considered as individual trees. Based on the assumptions, thiessen polygons were generated to serve as buffers for the canopy extent. The negative profile curvature is then measured from the slope of the CHM. The results show that the aggregated points from a negative profile curvature raster provide the most realistic crown shape. The absence of field data regarding tree crown dimensions require accurate visual assessment after the appended delineated tree crown polygon was superimposed to the hill shaded CHM.


Trees ◽  
2016 ◽  
Vol 30 (4) ◽  
pp. 1287-1301 ◽  
Author(s):  
Mónica Herrero-Huerta ◽  
Beatriz Felipe-García ◽  
Soledad Belmar-Lizarán ◽  
David Hernández-López ◽  
Pablo Rodríguez-Gonzálvez ◽  
...  

Author(s):  
R. J. L. Argamosa ◽  
E. C. Paringit ◽  
K. R. Quinton ◽  
F. A. M. Tandoc ◽  
R. A. G. Faelga ◽  
...  

The generation of high resolution canopy height model (CHM) from LiDAR makes it possible to delineate individual tree crown by means of a fully-automated method using the CHM’s curvature through its slope. The local maxima are obtained by taking the maximum raster value in a 3 m x 3 m cell. These values are assumed as tree tops and therefore considered as individual trees. Based on the assumptions, thiessen polygons were generated to serve as buffers for the canopy extent. The negative profile curvature is then measured from the slope of the CHM. The results show that the aggregated points from a negative profile curvature raster provide the most realistic crown shape. The absence of field data regarding tree crown dimensions require accurate visual assessment after the appended delineated tree crown polygon was superimposed to the hill shaded CHM.


Sign in / Sign up

Export Citation Format

Share Document