scholarly journals Sparse Unmixing for Hyperspectral Image with Nonlocal Low-Rank Prior

2019 ◽  
Vol 11 (24) ◽  
pp. 2897 ◽  
Author(s):  
Yuhui Zheng ◽  
Feiyang Wu ◽  
Hiuk Jae Shim ◽  
Le Sun

Hyperspectral unmixing is a key preprocessing technique for hyperspectral image analysis. To further improve the unmixing performance, in this paper, a nonlocal low-rank prior associated with spatial smoothness and spectral collaborative sparsity are integrated together for unmixing the hyperspectral data. The proposed method is based on a fact that hyperspectral images have self-similarity in nonlocal sense and smoothness in local sense. To explore the spatial self-similarity, nonlocal cubic patches are grouped together to compose a low-rank matrix. Then, based on the linear mixed model framework, the nuclear norm is constrained to the abundance matrix of these similar patches to enforce low-rank property. In addition, the local spatial information and spectral characteristic are also taken into account by introducing TV regularization and collaborative sparse terms, respectively. Finally, the results of the experiments on two simulated data sets and two real data sets show that the proposed algorithm produces better performance than other state-of-the-art algorithms.

2021 ◽  
pp. 0272989X2110038
Author(s):  
Felix Achana ◽  
Daniel Gallacher ◽  
Raymond Oppong ◽  
Sungwook Kim ◽  
Stavros Petrou ◽  
...  

Economic evaluations conducted alongside randomized controlled trials are a popular vehicle for generating high-quality evidence on the incremental cost-effectiveness of competing health care interventions. Typically, in these studies, resource use (and by extension, economic costs) and clinical (or preference-based health) outcomes data are collected prospectively for trial participants to estimate the joint distribution of incremental costs and incremental benefits associated with the intervention. In this article, we extend the generalized linear mixed-model framework to enable simultaneous modeling of multiple outcomes of mixed data types, such as those typically encountered in trial-based economic evaluations, taking into account correlation of outcomes due to repeated measurements on the same individual and other clustering effects. We provide new wrapper functions to estimate the models in Stata and R by maximum and restricted maximum quasi-likelihood and compare the performance of the new routines with alternative implementations across a range of statistical programming packages. Empirical applications using observed and simulated data from clinical trials suggest that the new methods produce broadly similar results as compared with Stata’s merlin and gsem commands and a Bayesian implementation in WinBUGS. We highlight that, although these empirical applications primarily focus on trial-based economic evaluations, the new methods presented can be generalized to other health economic investigations characterized by multivariate hierarchical data structures.


2019 ◽  
Vol 11 (24) ◽  
pp. 2974 ◽  
Author(s):  
Youqiang Zhang ◽  
Guo Cao ◽  
Xuesong Li ◽  
Bisheng Wang ◽  
Peng Fu

Random forest (RF) has obtained great success in hyperspectral image (HSI) classification. However, RF cannot leverage its full potential in the case of limited labeled samples. To address this issue, we propose a unified framework that embeds active learning (AL) and semi-supervised learning (SSL) into RF (ASSRF). Our aim is to utilize AL and SSL simultaneously to improve the performance of RF. The objective of the proposed method is to use a small number of manually labeled samples to train classifiers with relative high classification accuracy. To achieve this goal, a new query function is designed to query the most informative samples for manual labeling, and a new pseudolabeling strategy is introduced to select some samples for pseudolabeling. Compared with other AL- and SSL-based methods, the proposed method has several advantages. First, ASSRF utilizes the spatial information to construct a query function for AL, which can select more informative samples. Second, in addition to providing more labeled samples for SSL, the proposed pseudolabeling method avoids bias caused by AL-labeled samples. Finally, the proposed model retains the advantages of RF. To demonstrate the effectiveness of ASSRF, we conducted experiments on three real hyperspectral data sets. The experimental results have shown that our proposed method outperforms other state-of-the-art methods.


Author(s):  
Yulong Wang ◽  
Yuan Yan Tang ◽  
Luoqing Li

This paper presents a novel destriping method for hyperspectral images. Most of the previous destriping methods regard only the corrupted subimage as an isolated image and fail to consider the high spectral correlation between the subimages in different bands. This may impede their performance of removing striping noises. The proposed method takes advantage of both spectral and spatial information to contribute to the process of striping noise reduction. Firstly, a correntropy-based sparse representation (CSR) model is utilized to learn the high spectral correlation between the subimages in different bands. Then the spatial information of the target subimage with striping noise is incorporated into the CSR model with a unidirectional Huber–Markov random field prior. We devise an Augmented Lagrange Multiplier type of algorithm to efficiently compute the destriped results. The experimental results on two real-world hyperspectral data sets demonstrate the effectiveness of the proposed method.


2019 ◽  
Vol 11 (7) ◽  
pp. 884 ◽  
Author(s):  
Li Wang ◽  
Jiangtao Peng ◽  
Weiwei Sun

Jointly using spectral and spatial information has become a mainstream strategy in the field of hyperspectral image (HSI) processing, especially for classification. However, due to the existence of noisy or correlated spectral bands in the spectral domain and inhomogeneous pixels in the spatial neighborhood, HSI classification results are often degraded and unsatisfactory. Motivated by the attention mechanism, this paper proposes a spatial–spectral squeeze-and-excitation (SSSE) module to adaptively learn the weights for different spectral bands and for different neighboring pixels. The SSSE structure can suppress or motivate features at a certain position, which can effectively resist noise interference and improve the classification results. Furthermore, we embed several SSSE modules into a residual network architecture and generate an SSSE-based residual network (SSSERN) model for HSI classification. The proposed SSSERN method is compared with several existing deep learning networks on two benchmark hyperspectral data sets. Experimental results demonstrate the effectiveness of our proposed network.


2022 ◽  
Author(s):  
Taner Ince ◽  
Tugcan Dundar ◽  
Seydi Kacmaz ◽  
Hasari Karci

We propose a superpixel weighted low-rank and sparse unmixing (SWLRSU) method for sparse unmixing. The proposed method consists of two steps. In the first step, we segment hyperspectral image into superpixels which are defined as the homogeneous regions with different shape and sizes according to the spatial structure. Then, an efficient method is proposed to obtain a spatial weight term using superpixels to capture the spatial structure of hyperspectral data. In the second step, we solve a superpixel guided low-rank and spatially weighted sparse approximation problem in which spatial weight term obtained in the first step is used as a weight term in sparsity promoting norm. This formulation exploits the spatial correlation of the pixels in the hyperspectral image efficiently, which yields satisfactory unmixing results. The experiments are conducted on simulated and real data sets to show the effectiveness of the proposed method.


Author(s):  
N. Jamshidpour ◽  
S. Homayouni ◽  
A. Safari

Hyperspectral image classification has been one of the most popular research areas in the remote sensing community in the past decades. However, there are still some problems that need specific attentions. For example, the lack of enough labeled samples and the high dimensionality problem are two most important issues which degrade the performance of supervised classification dramatically. The main idea of semi-supervised learning is to overcome these issues by the contribution of unlabeled samples, which are available in an enormous amount. In this paper, we propose a graph-based semi-supervised classification method, which uses both spectral and spatial information for hyperspectral image classification. More specifically, two graphs were designed and constructed in order to exploit the relationship among pixels in spectral and spatial spaces respectively. Then, the Laplacians of both graphs were merged to form a weighted joint graph. The experiments were carried out on two different benchmark hyperspectral data sets. The proposed method performed significantly better than the well-known supervised classification methods, such as SVM. The assessments consisted of both accuracy and homogeneity analyses of the produced classification maps. The proposed spectral-spatial SSL method considerably increased the classification accuracy when the labeled training data set is too scarce.When there were only five labeled samples for each class, the performance improved 5.92% and 10.76% compared to spatial graph-based SSL, for AVIRIS Indian Pine and Pavia University data sets respectively.


2022 ◽  
Author(s):  
Taner Ince ◽  
Tugcan Dundar ◽  
Seydi Kacmaz ◽  
Hasari Karci

We propose a superpixel weighted low-rank and sparse unmixing (SWLRSU) method for sparse unmixing. The proposed method consists of two steps. In the first step, we segment hyperspectral image into superpixels which are defined as the homogeneous regions with different shape and sizes according to the spatial structure. Then, an efficient method is proposed to obtain a spatial weight term using superpixels to capture the spatial structure of hyperspectral data. In the second step, we solve a superpixel guided low-rank and spatially weighted sparse approximation problem in which spatial weight term obtained in the first step is used as a weight term in sparsity promoting norm. This formulation exploits the spatial correlation of the pixels in the hyperspectral image efficiently, which yields satisfactory unmixing results. The experiments are conducted on simulated and real data sets to show the effectiveness of the proposed method.


Author(s):  
Zhijing Ye ◽  
Hong Li ◽  
Yalong Song ◽  
Jianzhong Wang ◽  
Jon Atli Benediktsson

In this paper, we propose a novel semi-supervised learning classification framework using box-based smooth ordering and multiple 1D-embedding-based interpolation (M1DEI) in [J. Wang, Semi-supervised learning using multiple one-dimensional embedding-based adaptive interpolation, Int. J. Wavelets Multiresolut. Inf. Process. 14(2) (2016) 11 pp.] for hyperspectral images. Due to the lack of labeled samples, conventional supervised approaches cannot generally perform efficient enough. On the other hand, obtaining labeled samples for hyperspectral image classification is difficult, expensive and time-consuming, while unlabeled samples are easily available. The proposed method can effectively overcome the lack of labeled samples by introducing new labeled samples from unlabeled samples in a label boosting framework. Furthermore, the proposed method uses spatial information from the pixels in the neighborhood of the current pixel to better catch the features of hyperspectral image. The proposed idea is that, first, we extract the box (cube data) of each pixel from its neighborhood, then apply multiple 1D interpolation to construct the classifier. Experimental results on three hyperspectral data sets demonstrate that the proposed method is efficient, and outperforms recent popular semi-supervised methods in terms of accuracies.


2021 ◽  
Vol 13 (2) ◽  
pp. 268
Author(s):  
Xiaochen Lv ◽  
Wenhong Wang ◽  
Hongfu Liu

Hyperspectral unmixing is an important technique for analyzing remote sensing images which aims to obtain a collection of endmembers and their corresponding abundances. In recent years, non-negative matrix factorization (NMF) has received extensive attention due to its good adaptability for mixed data with different degrees. The majority of existing NMF-based unmixing methods are developed by incorporating additional constraints into the standard NMF based on the spectral and spatial information of hyperspectral images. However, they neglect to exploit the nature of imbalanced pixels included in the data, which may cause the pixels mixed with imbalanced endmembers to be ignored, and thus the imbalanced endmembers generally cannot be accurately estimated due to the statistical property of NMF. To exploit the information of imbalanced samples in hyperspectral data during the unmixing procedure, in this paper, a cluster-wise weighted NMF (CW-NMF) method for the unmixing of hyperspectral images with imbalanced data is proposed. Specifically, based on the result of clustering conducted on the hyperspectral image, we construct a weight matrix and introduce it into the model of standard NMF. The proposed weight matrix can provide an appropriate weight value to the reconstruction error between each original pixel and the reconstructed pixel in the unmixing procedure. In this way, the adverse effect of imbalanced samples on the statistical accuracy of NMF is expected to be reduced by assigning larger weight values to the pixels concerning imbalanced endmembers and giving smaller weight values to the pixels mixed by majority endmembers. Besides, we extend the proposed CW-NMF by introducing the sparsity constraints of abundance and graph-based regularization, respectively. The experimental results on both synthetic and real hyperspectral data have been reported, and the effectiveness of our proposed methods has been demonstrated by comparing them with several state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document