scholarly journals Low Overlapping Point Cloud Registration Using Line Features Detection

2019 ◽  
Vol 12 (1) ◽  
pp. 61
Author(s):  
Miloš Prokop ◽  
Salman Ahmed Shaikh ◽  
Kyoung-Sook Kim

Modern robotic exploratory strategies assume multi-agent cooperation that raises a need for an effective exchange of acquired scans of the environment with the absence of a reliable global positioning system. In such situations, agents compare the scans of the outside world to determine if they overlap in some region, and if they do so, they determine the right matching between them. The process of matching multiple point-cloud scans is called point-cloud registration. Using the existing point-cloud registration approaches, a good match between any two-point-clouds is achieved if and only if there exists a large overlap between them, however, this limits the advantage of using multiple robots, for instance, for time-effective 3D mapping. Hence, a point-cloud registration approach is highly desirable if it can work with low overlapping scans. This work proposes a novel solution for the point-cloud registration problem with a very low overlapping area between the two scans. In doing so, no initial relative positions of the point-clouds are assumed. Most of the state-of-the-art point-cloud registration approaches iteratively match keypoints in the scans, which is computationally expensive. In contrast to the traditional approaches, a more efficient line-features-based point-cloud registration approach is proposed in this work. This approach, besides reducing the computational cost, avoids the problem of high false-positive rate of existing keypoint detection algorithms, which becomes especially significant in low overlapping point-cloud registration. The effectiveness of the proposed approach is demonstrated with the help of experiments.

Author(s):  
T. Sumi ◽  
H. Date ◽  
S. Kanai

In this paper, an efficient and robust registration method of multiple point clouds is proposed. In our research, we assume that point clouds are acquired by Terrestrial Laser Scanning (TLS) systems, and the scanned environments have a relatively flat base plane such as the ground or a floor. Our method is based on an existing pairwise registration method based on point projection images, which can quickly register the point clouds under the above assumptions. In the method, sliced point clouds are projected onto the base plane, and a binary image with feature points is created. The registration is done by using feature points of the images based on the sample consensus strategy. In this paper, first, we improve the efficiency of the pairwise registration method by introducing height and occlusion information to the image. Then, a validity check method of pairwise registration using space-classified images is proposed to avoid exhaustive pairwise registration in the multiple point cloud registration process. Finally, an efficient multiple point cloud registration algorithm based on progressive creation of a point cloud connectivity graph using iterative rough and precise pairwise registration and the validity check method is proposed. The effectiveness of our method is shown through its application to three datasets of outdoor environments.


2020 ◽  
Vol 10 (10) ◽  
pp. 3340 ◽  
Author(s):  
Pavel Chmelar ◽  
Lubos Rejfek ◽  
Tan N. Nguyen ◽  
Duy-Hung Ha

Nowadays, mobile robot exploration needs a rangefinder to obtain a large number of measurement points to achieve a detailed and precise description of a surrounding area and objects, which is called the point cloud. However, a single point cloud scan does not cover the whole area, so multiple point cloud scans must be acquired and compared together to find the right matching between them in a process called registration method. This method requires further processing and places high demands on memory consumption, especially for small embedded devices in mobile robots. This paper describes a novel method to reduce the burden of processing for multiple point cloud scans. We introduce our approach to preprocess an input point cloud in order to detect planar surfaces, simplify space description, fill gaps in point clouds, and get important space features. All of these processes are achieved by applying advanced image processing methods in combination with the quantization of physical space points. The results show the reliability of our approach to detect close parallel walls with suitable parameter settings. More importantly, planar surface detection shows a 99% decrease in necessary descriptive points almost in all cases. This proposed approach is verified on the real indoor point clouds.


2020 ◽  
Vol 9 (11) ◽  
pp. 647
Author(s):  
Cedrique Fotsing ◽  
Nafissetou Nziengam ◽  
Christophe Bobda

Point cloud registration combines multiple point cloud data sets collected from different positions using the same or different devices to form a single point cloud within a single coordinate system. Point cloud registration is usually achieved through spatial transformations that align and merge multiple point clouds into a single globally consistent model. In this paper, we present a new segmentation-based approach for point cloud registration. Our method consists of extracting plane structures from point clouds and then, using the 4-Point Congruent Sets (4PCS) technique, we estimate transformations that align the plane structures. Instead of a global alignment using all the points in the dataset, our method aligns 2-point clouds using their local plane structures. This considerably reduces the data size, computational workload, and execution time. Unlike conventional methods that seek to align the largest number of common points between entities, the new method aims to align the largest number of planes. Using partial point clouds of multiple real-world scenes, we demonstrate the superiority of our method compared to raw 4PCS in terms of quality of result (QoS) and execution time. Our method requires about half the execution time of 4PCS in all the tested datasets and produces better alignment of the point clouds.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1563
Author(s):  
Ruibing Wu ◽  
Ziping Yu ◽  
Donghong Ding ◽  
Qinghua Lu ◽  
Zengxi Pan ◽  
...  

As promising technology with low requirements and high depositing efficiency, Wire Arc Additive Manufacturing (WAAM) can significantly reduce the repair cost and improve the formation quality of molds. To further improve the accuracy of WAAM in repairing molds, the point cloud model that expresses the spatial distribution and surface characteristics of the mold is proposed. Since the mold has a large size, it is necessary to be scanned multiple times, resulting in multiple point cloud models. The point cloud registration, such as the Iterative Closest Point (ICP) algorithm, then plays the role of merging multiple point cloud models to reconstruct a complete data model. However, using the ICP algorithm to merge large point clouds with a low-overlap area is inefficient, time-consuming, and unsatisfactory. Therefore, this paper provides the improved Offset Iterative Closest Point (OICP) algorithm, which is an online fast registration algorithm suitable for intelligent WAAM mold repair technology. The practicality and reliability of the algorithm are illustrated by the comparison results with the standard ICP algorithm and the three-coordinate measuring instrument in the Experimental Setup Section. The results are that the OICP algorithm is feasible for registrations with low overlap rates. For an overlap rate lower than 60% in our experiments, the traditional ICP algorithm failed, while the Root Mean Square (RMS) error reached 0.1 mm, and the rotation error was within 0.5 degrees, indicating the improvement of the proposed OICP algorithm.


2019 ◽  
Vol 9 (16) ◽  
pp. 3273 ◽  
Author(s):  
Wen-Chung Chang ◽  
Van-Toan Pham

This paper develops a registration architecture for the purpose of estimating relative pose including the rotation and the translation of an object in terms of a model in 3-D space based on 3-D point clouds captured by a 3-D camera. Particularly, this paper addresses the time-consuming problem of 3-D point cloud registration which is essential for the closed-loop industrial automated assembly systems that demand fixed time for accurate pose estimation. Firstly, two different descriptors are developed in order to extract coarse and detailed features of these point cloud data sets for the purpose of creating training data sets according to diversified orientations. Secondly, in order to guarantee fast pose estimation in fixed time, a seemingly novel registration architecture by employing two consecutive convolutional neural network (CNN) models is proposed. After training, the proposed CNN architecture can estimate the rotation between the model point cloud and a data point cloud, followed by the translation estimation based on computing average values. By covering a smaller range of uncertainty of the orientation compared with a full range of uncertainty covered by the first CNN model, the second CNN model can precisely estimate the orientation of the 3-D point cloud. Finally, the performance of the algorithm proposed in this paper has been validated by experiments in comparison with baseline methods. Based on these results, the proposed algorithm significantly reduces the estimation time while maintaining high precision.


2019 ◽  
Vol 12 (1) ◽  
pp. 112 ◽  
Author(s):  
Dong Lin ◽  
Lutz Bannehr ◽  
Christoph Ulrich ◽  
Hans-Gerd Maas

Thermal imagery is widely used in various fields of remote sensing. In this study, a novel processing scheme is developed to process the data acquired by the oblique airborne photogrammetric system AOS-Tx8 consisting of four thermal cameras and four RGB cameras with the goal of large-scale area thermal attribute mapping. In order to merge 3D RGB data and 3D thermal data, registration is conducted in four steps: First, thermal and RGB point clouds are generated independently by applying structure from motion (SfM) photogrammetry to both the thermal and RGB imagery. Next, a coarse point cloud registration is performed by the support of georeferencing data (global positioning system, GPS). Subsequently, a fine point cloud registration is conducted by octree-based iterative closest point (ICP). Finally, three different texture mapping strategies are compared. Experimental results showed that the global image pose refinement outperforms the other two strategies at registration accuracy between thermal imagery and RGB point cloud. Potential building thermal leakages in large areas can be fast detected in the generated texture mapping results. Furthermore, a combination of the proposed workflow and the oblique airborne system allows for a detailed thermal analysis of building roofs and facades.


2020 ◽  
Vol 17 (5) ◽  
pp. 2342-2348
Author(s):  
Ashutosh Upadhyay ◽  
S. Vijayalakshmi

In the field of computer vision, face detection algorithms achieved accuracy to a great extent, but for the real time applications it remains a challenge to maintain the balance between the accuracy and efficiency i.e., to gain accuracy computational cost also increases to deal with the large data sets. This paper, propose half face detection algorithm to address the efficiency of the face detection algorithm. The full face detection algorithm consider complete face data set for training which incur more computation cost. To reduce the computation cost, proposed model captures the features of the half of the face by assuming that the human face is symmetric about the vertical axis passing through the nose and train the system using reduced half face features. The proposed algorithm extracts Linear Binary Pattern (LBP) features and train model using adaboost classifier. Algorithm performance is presented in terms of the accuracy i.e., True Positive Rate (TPR), False Positive Rate (FTR) and face recognition time complexity.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5778
Author(s):  
Baifan Chen ◽  
Hong Chen ◽  
Baojun Song ◽  
Grace Gong

Three-dimensional point cloud registration (PCReg) has a wide range of applications in computer vision, 3D reconstruction and medical fields. Although numerous advances have been achieved in the field of point cloud registration in recent years, large-scale rigid transformation is a problem that most algorithms still cannot effectively handle. To solve this problem, we propose a point cloud registration method based on learning and transform-invariant features (TIF-Reg). Our algorithm includes four modules, which are the transform-invariant feature extraction module, deep feature embedding module, corresponding point generation module and decoupled singular value decomposition (SVD) module. In the transform-invariant feature extraction module, we design TIF in SE(3) (which means the 3D rigid transformation space) which contains a triangular feature and local density feature for points. It fully exploits the transformation invariance of point clouds, making the algorithm highly robust to rigid transformation. The deep feature embedding module embeds TIF into a high-dimension space using a deep neural network, further improving the expression ability of features. The corresponding point cloud is generated using an attention mechanism in the corresponding point generation module, and the final transformation for registration is calculated in the decoupled SVD module. In an experiment, we first train and evaluate the TIF-Reg method on the ModelNet40 dataset. The results show that our method keeps the root mean squared error (RMSE) of rotation within 0.5∘ and the RMSE of translation error close to 0 m, even when the rotation is up to [−180∘, 180∘] or the translation is up to [−20 m, 20 m]. We also test the generalization of our method on the TUM3D dataset using the model trained on Modelnet40. The results show that our method’s errors are close to the experimental results on Modelnet40, which verifies the good generalization ability of our method. All experiments prove that the proposed method is superior to state-of-the-art PCReg algorithms in terms of accuracy and complexity.


2020 ◽  
Vol 12 (3) ◽  
pp. 442 ◽  
Author(s):  
Jesús Balado ◽  
Elena González ◽  
Pedro Arias ◽  
David Castro

Traffic signs are a key element in driver safety. Governments invest a great amount of resources in maintaining the traffic signs in good condition, for which a correct inventory is necessary. This work presents a novel method for mapping traffic signs based on data acquired with MMS (Mobile Mapping System): images and point clouds. On the one hand, images are faster to process and artificial intelligence techniques, specifically Convolutional Neural Networks, are more optimized than in point clouds. On the other hand, point clouds allow a more exact positioning than the exclusive use of images. The false positive rate per image is only 0.004. First, traffic signs are detected in the images obtained by the 360° camera of the MMS through RetinaNet and they are classified by their corresponding InceptionV3 network. The signs are then positioned in the georeferenced point cloud by means of a projection according to the pinhole model from the images. Finally, duplicate geolocalized signs detected in multiple images are filtered. The method has been tested in two real case studies with 214 images, where 89.7% of the signals have been correctly detected, of which 92.5% have been correctly classified and 97.5% have been located with an error of less than 0.5 m. This sequence, which combines images to detection–classification, and point clouds to geo-referencing, in this order, optimizes processing time and allows this method to be included in a company’s production process. The method is conducted automatically and takes advantage of the strengths of each data type.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Kang Leng Chiew ◽  
Jeffrey Soon-Fatt Choo ◽  
San Nah Sze ◽  
Kelvin S. C. Yong

Phishing attack is a cybercrime that can lead to severe financial losses for Internet users and entrepreneurs. Typically, phishers are fond of using fuzzy techniques during the creation of a website. They confuse the victim by imitating the appearance and content of a legitimate website. In addition, many websites are vulnerable to phishing attacks, including financial institutions, social networks, e-commerce, and airline websites. This paper is an extension of our previous work that leverages the favicon with Google image search to reveal the identity of a website. Our identity retrieval technique involves an effective mathematical model that can be used to assist in retrieving the right identity from the many entries of the search results. In this paper, we introduced an enhanced version of the favicon-based phishing attack detection with the introduction of the Domain Name Amplification feature and incorporation of addition features. Additional features are very useful when the website being examined does not have a favicon. We have collected a total of 5,000 phishing websites from PhishTank and 5,000 legitimate websites from Alexa to verify the effectiveness of the proposed method. From the experimental results, we achieved a 96.93% true positive rate with only a 4.13% false positive rate.


Sign in / Sign up

Export Citation Format

Share Document