scholarly journals Assessing the Changes in the Moisture/Dryness of Water Cavity Surfaces in Imlili Sebkha in Southwestern Morocco by Using Machine Learning Classification in Google Earth Engine

2020 ◽  
Vol 12 (1) ◽  
pp. 131
Author(s):  
Sofia Hakdaoui ◽  
Anas Emran ◽  
Biswajeet Pradhan ◽  
Abdeljebbar Qninba ◽  
Taoufik El Balla ◽  
...  

Imlili Sebkha is a stable and flat depression in southern Morocco that is more than 10 km long and almost 3 km wide. This region is mainly sandy, but its northern part holds permanent water pockets that contain fauna and flora despite their hypersaline water. Google Earth Engine (GEE) has revolutionized land monitoring analysis by allowing the use of satellite imagery and other datasets via cloud computing technology and server-side JavaScript programming. This work highlights the potential application of GEE in processing large amounts of satellite Earth Observation (EO) Big Data for the free, long-term, and wide spatio-temporal wet/dry permanent salt water cavities and moisture monitoring of Imlili Sebkha. Optical and radar images were used to understand the functions of Imlili Sebkha in discovering underground hydrological networks. The main objective of this work was to investigate and evaluate the complementarity of optical Landsat, Sentinel-2 data, and Sentinel-1 radar data in such a desert environment. Results show that radar images are not only well suited in studying desertic areas but also in mapping the water cavities in desert wetland zones. The sensitivity of these images to the variations in the slope of the topographic surface facilitated the geological and geomorphological analyses of desert zones and helped reveal the hydrological functions of Imlili Sebkha in discovering buried underground networks.

2020 ◽  
Vol 12 (4) ◽  
pp. 709 ◽  
Author(s):  
Abhishek Banerjee ◽  
Ruishan Chen ◽  
Michael E. Meadows ◽  
R.B. Singh ◽  
Suraj Mal ◽  
...  

This paper analyses the spatio-temporal trends and variability in annual, seasonal, and monthly rainfall with corresponding rainy days in Bhilangana river basin, Uttarakhand Himalaya, based on stations and two gridded products. Station-based monthly rainfall and rainy days data were obtained from the India Meteorological Department (IMD) for the period from 1983 to 2008 and applied, along with two daily rainfall gridded products to establish temporal changes and spatial associations in the study area. Due to the lack of more recent ground station rainfall measurements for the basin, gridded data were then used to establish monthly rainfall spatio-temporal trends for the period 2009 to 2018. The study shows all surface observatories in the catchment experienced an annual decreasing trend in rainfall over the 1983 to 2008 period, averaging 15.75 mm per decade. Analysis of at the monthly and seasonal trend showed reduced rainfall for August and during monsoon season as a whole (10.13 and 11.38 mm per decade, respectively); maximum changes were observed in both monsoon and winter months. Gridded rainfall data were obtained from the Climate Hazard Infrared Group Precipitation Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR). By combining the big data analytical potential of Google Earth Engine (GEE), we compare spatial patterns and temporal trends in observational and modelled precipitation and demonstrate that remote sensing products can reliably be used in inaccessible areas where observational data are scarce and/or temporally incomplete. CHIRPS reanalysis data indicate that there are in fact three significantly distinct annual rainfall periods in the basin, viz. phase 1: 1983 to 1997 (relatively high annual rainfall); phase 2: 1998 to 2008 (drought); phase 3: 2009 to 2018 (return to relatively high annual rainfall again). By comparison, PERSIANN-CDR data show reduced annual and winter precipitation, but no significant changes during the monsoon and pre-monsoon seasons from 1983 to 2008. The major conclusions of this study are that rainfall modelled using CHIRPS corresponds well with the observational record in confirming the decreased annual and seasonal rainfall, averaging 10.9 and 7.9 mm per decade respectively between 1983 and 2008, although there is a trend (albeit not statistically significant) to higher rainfall after the marked dry period between 1998 and 2008. Long-term variability in rainfall in the Bhilangana river basin has had critical impacts on the environment arising from water scarcity in this mountainous region.


2018 ◽  
Vol 10 (9) ◽  
pp. 1488 ◽  
Author(s):  
Roberta Ravanelli ◽  
Andrea Nascetti ◽  
Raffaella Cirigliano ◽  
Clarissa Di Rico ◽  
Giovanni Leuzzi ◽  
...  

All over the world, the rapid urbanization process is challenging the sustainable development of our cities. In 2015, the United Nation highlighted in Goal 11 of the SDGs (Sustainable Development Goals) the importance to “Make cities inclusive, safe, resilient and sustainable”. In order to monitor progress regarding SDG 11, there is a need for proper indicators, representing different aspects of city conditions, obviously including the Land Cover (LC) changes and the urban climate with its most distinct feature, the Urban Heat Island (UHI). One of the aspects of UHI is the Surface Urban Heat Island (SUHI), which has been investigated through airborne and satellite remote sensing over many years. The purpose of this work is to show the present potential of Google Earth Engine (GEE) to process the huge and continuously increasing free satellite Earth Observation (EO) Big Data for long-term and wide spatio-temporal monitoring of SUHI and its connection with LC changes. A large-scale spatio-temporal procedure was implemented under GEE, also benefiting from the already established Climate Engine (CE) tool to extract the Land Surface Temperature (LST) from Landsat imagery and the simple indicator Detrended Rate Matrix was introduced to globally represent the net effect of LC changes on SUHI. The implemented procedure was successfully applied to six metropolitan areas in the U.S., and a general increasing of SUHI due to urban growth was clearly highlighted. As a matter of fact, GEE indeed allowed us to process more than 6000 Landsat images acquired over the period 1992–2011, performing a long-term and wide spatio-temporal study on SUHI vs. LC change monitoring. The present feasibility of the proposed procedure and the encouraging obtained results, although preliminary and requiring further investigations (calibration problems related to LST determination from Landsat imagery were evidenced), pave the way for a possible global service on SUHI monitoring, able to supply valuable indications to address an increasingly sustainable urban planning of our cities.


2020 ◽  
Vol 34 (01) ◽  
pp. 378-385
Author(s):  
Zezhou Cheng ◽  
Saadia Gabriel ◽  
Pankaj Bhambhani ◽  
Daniel Sheldon ◽  
Subhransu Maji ◽  
...  

The US weather radar archive holds detailed information about biological phenomena in the atmosphere over the last 20 years. Communally roosting birds congregate in large numbers at nighttime roosting locations, and their morning exodus from the roost is often visible as a distinctive pattern in radar images. This paper describes a machine learning system to detect and track roost signatures in weather radar data. A significant challenge is that labels were collected opportunistically from previous research studies and there are systematic differences in labeling style. We contribute a latent-variable model and EM algorithm to learn a detection model together with models of labeling styles for individual annotators. By properly accounting for these variations we learn a significantly more accurate detector. The resulting system detects previously unknown roosting locations and provides comprehensive spatio-temporal data about roosts across the US. This data will provide biologists important information about the poorly understood phenomena of broad-scale habitat use and movements of communally roosting birds during the non-breeding season.


2020 ◽  
Vol 9 (10) ◽  
pp. 580 ◽  
Author(s):  
Maria Antonia Brovelli ◽  
Yaru Sun ◽  
Vasil Yordanov

Deforestation causes diverse and profound consequences for the environment and species. Direct or indirect effects can be related to climate change, biodiversity loss, soil erosion, floods, landslides, etc. As such a significant process, timely and continuous monitoring of forest dynamics is important, to constantly follow existing policies and develop new mitigation measures. The present work had the aim of mapping and monitoring the forest change from 2000 to 2019 and of simulating the future forest development of a rainforest region located in the Pará state, Brazil. The land cover dynamics were mapped at five-year intervals based on a supervised classification model deployed on the cloud processing platform Google Earth Engine. Besides the benefits of reduced computational time, the service is coupled with a vast data catalogue providing useful access to global products, such as multispectral images of the missions Landsat five, seven, eight and Sentinel-2. The validation procedures were done through photointerpretation of high-resolution panchromatic images obtained from CBERS (China–Brazil Earth Resources Satellite). The more than satisfactory results allowed an estimation of peak deforestation rates for the period 2000–2006; for the period 2006–2015, a significant decrease and stabilization, followed by a slight increase till 2019. Based on the derived trends a forest dynamics was simulated for the period 2019–2028, estimating a decrease in the deforestation rate. These results demonstrate that such a fusion of satellite observations, machine learning, and cloud processing, benefits the analysis of the forest dynamics and can provide useful information for the development of forest policies.


2020 ◽  
Author(s):  
Laura Bindereif ◽  
Tobias Rentschler ◽  
Martin Batelheim ◽  
Marta Díaz-Zorita Bonilla ◽  
Philipp Gries ◽  
...  

<p>Land cover information plays an essential role for resource development, environmental monitoring and protection. Amongst other natural resources, soils and soil properties are strongly affected by land cover and land cover change, which can lead to soil degradation. Remote sensing techniques are very suitable for spatio-temporal mapping of land cover mapping and change detection. With remote sensing programs vast data archives were established. Machine learning applications provide appropriate algorithms to analyse such amounts of data efficiently and with accurate results. However, machine learning methods require specific sampling techniques and are usually made for balanced datasets with an even training sample frequency. Though, most real-world datasets are imbalanced and methods to reduce the imbalance of datasets with synthetic sampling are required. Synthetic sampling methods increase the number of samples in the minority class and/or decrease the number in the majority class to achieve higher model accuracy. The Synthetic Minority Over-Sampling Technique (SMOTE) is a method to generate synthetic samples and balance the dataset used in many machine learning applications. In the middle Guadalquivir basin, Andalusia, Spain, we used random forests with Landsat images from 1984 to 2018 as covariates to map the land cover change with the Google Earth Engine. The sampling design was based on stratified random sampling according to the CORINE land cover classification of 2012. The land cover classes in our study were arable land, permanent crops (plantations), pastures/grassland, forest and shrub. Artificial surfaces and water bodies were excluded from modelling. However, the number of the 130 training samples was imbalanced. The classes pasture (7 samples) and shrub (13 samples) show a lower number than the other classes (48, 47 and 16 samples). This led to misclassifications and negatively affected the classification accuracy. Therefore, we applied SMOTE to increase the number of samples and the classification accuracy of the model. Preliminary results are promising and show an increase of the classification accuracy, especially the accuracy of the previously underrepresented classes pasture and shrub. This corresponds to the results of studies with other objectives which also see the use of synthetic sampling methods as an improvement for the performance of classification frameworks.</p>


2018 ◽  
Author(s):  
Miranda E. Gray ◽  
Luke J. Zachmann ◽  
Brett G. Dickson

Abstract. There is broad consensus that wildfire activity is likely to increase in western US forests and woodlands over the next century. Therefore, spatial predictions of the potential for large wildfires have immediate and growing relevance to near- and long-term research, planning, and management objectives. Fuels, climate, weather, and the landscape all exert controls on wildfire occurrence and spread, but the dynamics of these controls vary from daily to decadal timescales. Accurate spatial predictions of large wildfires should therefore strive to integrate across these variables and timescales. Here, we describe a high spatial resolution dataset (250-m pixel) of the probability of large wildfire (> 405 ha) across all western US forests and woodlands, from 2005 to the present. The dataset is automatically updated on a weekly basis and in near real-time (i.e., up to the present week) using Google Earth Engine and a "Continuous Integration" pipeline. Each image in the dataset is the output of a machine-learning algorithm, trained on 10 independent, random samples of historic small and large wildfires, and represents the predicted probability of an individual pixel burning in a large fire. This novel workflow is able to integrate the short-term dynamics of fuels and weather into weekly predictions, while also integrating longer-term dynamics of fuels, climate, and the landscape. As a near real-time product, the dataset can provide operational fire managers with immediate, on-the-ground information to closely monitor changing potential for large wildfire occurrence and spread. It can also serve as a foundational dataset for longer-term planning and research, such as strategic targeting of fuels management, fire-smart development at the wildland urban interface, and analysis of trends in wildfire potential over time. Weekly large fire probability GeoTiff products from 2005 through 2017 are archived on Figshare online digital repository with the DOI 10.6084/m9.figshare.5765967 (available at https://doi.org/10.6084/m9.figshare.5765967.v1). Near real-time weekly GeoTiff products and the entire dataset from 2005 on are also continuously uploaded to a Google Cloud Storage bucket at https://console.cloud.google.com/storage/wffr-preds/V1, and also available free of charge with a Google account. Near real-time products and the long-term archive are also available to registered Google Earth Engine (GEE) users as public GEE assets, and can be accessed with the image collection ID "users/mgray/wffr-preds" within GEE.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3010 ◽  
Author(s):  
Ruimeng Wang ◽  
Haoming Xia ◽  
Yaochen Qin ◽  
Wenhui Niu ◽  
Li Pan ◽  
...  

The spatio-temporal change of the surface water is very important to agricultural, economic, and social development in the Hetao Plain, as well as the structure and function of the ecosystem. To understand the long-term changes of the surface water area in the Hetao Plain, we used all available Landsat images (7534 scenes) and adopted the modified Normalized Difference Water Index (mNDWI), Enhanced Vegetation Index (EVI), and Normalized Difference Vegetation Index (NDVI) to map the open-surface water from 1989 to 2019 in the Google Earth Engine (GEE) cloud platform. We further analyzed precipitation, temperature, and irrigated area, revealing the impact of climate change and human activities on long-term surface water changes. The results show the following. (1) In the last 31 years, the maximum, seasonal, and annual average water body area values in the Hetao Plain have exhibited a downward trend. Meanwhile, the number of maximum, seasonal, and permanent water bodies displayed a significant upward trend. (2) The variation of the surface water area in the Hetao Plain is mainly affected by the maximum water body area, while the variation of the water body number is mainly affected by the number of minimum water bodies. (3) Precipitation has statistically significant positive effects on the water body area and water body number, which has statistically significant negative effects with temperature and irrigation. The findings of this study can be used to help the policy-makers and farmers understand changing water resources and its driving mechanism and provide a reference for water resources management, agricultural irrigation, and ecological protection.


Sign in / Sign up

Export Citation Format

Share Document