scholarly journals Detecting and Tracking Communal Bird Roosts in Weather Radar Data

2020 ◽  
Vol 34 (01) ◽  
pp. 378-385
Author(s):  
Zezhou Cheng ◽  
Saadia Gabriel ◽  
Pankaj Bhambhani ◽  
Daniel Sheldon ◽  
Subhransu Maji ◽  
...  

The US weather radar archive holds detailed information about biological phenomena in the atmosphere over the last 20 years. Communally roosting birds congregate in large numbers at nighttime roosting locations, and their morning exodus from the roost is often visible as a distinctive pattern in radar images. This paper describes a machine learning system to detect and track roost signatures in weather radar data. A significant challenge is that labels were collected opportunistically from previous research studies and there are systematic differences in labeling style. We contribute a latent-variable model and EM algorithm to learn a detection model together with models of labeling styles for individual annotators. By properly accounting for these variations we learn a significantly more accurate detector. The resulting system detects previously unknown roosting locations and provides comprehensive spatio-temporal data about roosts across the US. This data will provide biologists important information about the poorly understood phenomena of broad-scale habitat use and movements of communally roosting birds during the non-breeding season.

2013 ◽  
Vol 6 (6) ◽  
pp. 10699-10730
Author(s):  
A. Devasthale ◽  
L. Norin

Abstract. Using measurements from the national network of 12 weather radar stations for the last decade (2000–2010), we investigate the large-scale spatio-temporal variability of precipitation over Sweden. These statistics provide useful information to evaluate regional climate models as well as for hydrology and energy applications. A strict quality control is applied to filter out noise and artifacts from the radar data. We focus on investigating four distinct aspects namely, the diurnal cycle of precipitation and its seasonality, the dominant time scale (diurnal vs. seasonal) of variability, precipitation response to different wind directions, and the correlation of precipitation events with the North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO). When classified based on their intensity, moderate to high intensity events (precipitation > 0.34 mm (3 h)−1) peak distinctly during late afternoon over the majority of radar stations in summer and during late night or early morning in winter. Precipitation variability is highest over the southwestern parts of Sweden. It is shown that the high intensity events (precipitation > 1.7mm (3 h)−1) are positively correlated with NAO and AO (esp. over northern Sweden), while the low intensity events are negatively correlated (esp. over southeastern parts). It is further observed that southeasterly winds often lead to intense precipitation events over central and northern Sweden, while southwesterly winds contribute most to the total accumulated precipitation for all radar stations. Apart from its operational applications, the present study demonstrates the potential of the weather radar data set for studying climatic features of precipitation over Sweden.


2018 ◽  
Vol 10 (12) ◽  
pp. 2029 ◽  
Author(s):  
Thomas Ramsauer ◽  
Thomas Weiß ◽  
Philip Marzahn

Precipitation measurements provide crucial information for hydrometeorological applications. In regions where typical precipitation measurement gauges are sparse, gridded products aim to provide alternative data sources. This study examines the performance of NASA’s Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement Mission (IMERG, GPM) satellite precipitation dataset in capturing the spatio-temporal variability of weather events compared to the German weather radar dataset RADOLAN RW. Besides quantity, also timing of rainfall is of very high importance when modeling or monitoring the hydrologic cycle. Therefore, detection metrics are evaluated along with standard statistical measures to test both datasets. Using indices like “probability of detection” allows a binary evaluation showing the basic categorical accordance of the radar and satellite data. Furthermore, a pixel-by-pixel comparison is performed to assess the ability to represent the spatial variability of rainfall and precipitation quantity. All calculations are additionally carried out for seasonal subsets of the data to assess potentially different behavior due to differences in precipitation schemes. The results indicate significant differences between the datasets. Overall, GPM IMERG overestimates the quantity of precipitation compared to RADOLAN, especially in the winter season. Moreover, shortcomings in detection performance arise in this season with significant erroneously-detected, yet also missed precipitation events compared to the weather radar data. Additionally, along secondary mountain ranges and the Alps, topographically-induced precipitation is not represented in GPM data, which generally shows a lack of spatial variability in rainfall and snowfall estimates due to lower resolution.


2012 ◽  
Vol 16 (11) ◽  
pp. 4101-4117 ◽  
Author(s):  
A. Wagner ◽  
J. Seltmann ◽  
H. Kunstmann

Abstract. First results of radar derived climatology have emerged over the last years, as datasets of appropriate extent are becoming available. Usually, these statistics are based on time series lasting up to ten years as continuous storage of radar data was often not achieved before. This kind of climatology demands a high level of data quality. Small deviations or minor systematic under- or overestimations in single radar images become a major cause of error in statistical analysis. Extensive corrections of radar data are a crucial prerequisite for radar derived climatology. We present a new statistical post-correction scheme based on a climatological analysis of seven years of radar data of the Munich weather radar (2000–2006) operated by DWD (German Weather Service). Original radar products are used subject only to corrections within the signal processor without any further corrections on single radar images. The aim of this statistical correction is to make up for the average systematic errors caused by clutter, propagation, or measuring effects but to conserve small-scale natural variations in space. The statistical correction is based on a thorough analysis of the different causes of possible errors for the Munich weather radar. This analysis revealed the following basic effects: the decrease of rain amount as a function of height and distance from the radar, clutter effects such as clutter remnants after filtering, holes by eliminated clutter or shading effects from obstacles near the radar, visible as spokes, as well as the influence of the bright band. The correction algorithm is correspondingly based on these results. It consists of three modules. The first one is an altitude correction which minimises measuring effects. The second module corrects clutter effects and disturbances and the third one realises a mean adjustment to selected rain gauges. Two different sets of radar products are used. The statistical analysis as well as module 1 and module 2 of the correction algorithm are based on frequencies of the six reflectivity levels within the so-called PX product. For correction module 3 and for the validation of the correction algorithm, rain amounts are calculated from the 8-bit so-called DX product. The correction algorithm is created to post-correct climatological or statistical analysis of radar data with a temporal resolution larger than one year. The correction algorithm is used for frequencies of occurrence of radar reflectivities which enables its application even for radar products such as DWD's cell-tracking-product CONRAD. Application (2004–2006) and validation (2007–2009) periods of this correction algorithm with rain gauges show an increased conformity for radar climatology after the statistical correction. In the years 2004 to 2006 the Root-Mean-Square-Error (RMSE) between mean annual rain amounts of rain gauges and corresponding radar pixels decreases from 262 mm to 118 mm excluding those pairs of values where the rain gauges are situated in areas of obviously corrupted radar data. The results for the validation period 2007 to 2009 are based on all pairs of values and show a decline of the RMSE from 322 mm to 174 mm.


2021 ◽  
Author(s):  
Shenal Rajintha Gunawardena ◽  
Ptolemaios G Sarrigiannis ◽  
Daniel J Blackburn ◽  
Fei He

This paper introduces a novel EEG channel selection method to determine which channel interrelationships provide the best classification accuracy between a group of patients with Alzheimer's disease (AD) and a cohort of age matched healthy controls (HC). Thereby, determine which inter-relationships are more important for the in-depth dynamical analysis to further understand how neurodegenerative diseases such as AD affects global and local brain dynamics. The channel selection methodology uses kernel-based nonlinear manifold learning via Isomap and Gaussian Process Latent Variable Model (Isomap-GPLVM). The Isomap-GPLVM method is employed to learn both the spatial and temporal local similarities and global dissimilarities present within the EEG data structures. The resulting kernel (dis)similarity matrix is used as a measure of synchrony between EEG channels. Based on this information, channel-specific linear Support Vector Machine (SVM) classification is then used to determine which spatio-temporal channel inter-relationships are more important for in-depth dynamical analysis. In this work, the analysis of EEG data from HC and AD patients is presented as a case study. Our analysis shows that inter-relationships between channels in the fronto-parietal region and the rest are better at differentiating between AD and HC groups.


2019 ◽  
Vol 10 (11) ◽  
pp. 1908-1922 ◽  
Author(s):  
Tsung‐Yu Lin ◽  
Kevin Winner ◽  
Garrett Bernstein ◽  
Abhay Mittal ◽  
Adriaan M. Dokter ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
pp. 131
Author(s):  
Sofia Hakdaoui ◽  
Anas Emran ◽  
Biswajeet Pradhan ◽  
Abdeljebbar Qninba ◽  
Taoufik El Balla ◽  
...  

Imlili Sebkha is a stable and flat depression in southern Morocco that is more than 10 km long and almost 3 km wide. This region is mainly sandy, but its northern part holds permanent water pockets that contain fauna and flora despite their hypersaline water. Google Earth Engine (GEE) has revolutionized land monitoring analysis by allowing the use of satellite imagery and other datasets via cloud computing technology and server-side JavaScript programming. This work highlights the potential application of GEE in processing large amounts of satellite Earth Observation (EO) Big Data for the free, long-term, and wide spatio-temporal wet/dry permanent salt water cavities and moisture monitoring of Imlili Sebkha. Optical and radar images were used to understand the functions of Imlili Sebkha in discovering underground hydrological networks. The main objective of this work was to investigate and evaluate the complementarity of optical Landsat, Sentinel-2 data, and Sentinel-1 radar data in such a desert environment. Results show that radar images are not only well suited in studying desertic areas but also in mapping the water cavities in desert wetland zones. The sensitivity of these images to the variations in the slope of the topographic surface facilitated the geological and geomorphological analyses of desert zones and helped reveal the hydrological functions of Imlili Sebkha in discovering buried underground networks.


2010 ◽  
Vol 13 (2) ◽  
pp. 277-291 ◽  
Author(s):  
Bong-Chul Seo ◽  
Witold F. Krajewski ◽  
Anton Kruger ◽  
Piotr Domaszczynski ◽  
James A. Smith ◽  
...  

Hydro-NEXRAD is a prototype software system that provides hydrology and water resource communities with ready access to the vast data archives of the U.S. weather radar network known as NEXRAD (Next Generation Weather Radar). This paper describes radar-rainfall estimation algorithms and their modular components used in the Hydro-NEXRAD system to generate rainfall products to be delivered to users. A variety of customized modules implemented in Hydro-NEXRAD perform radar-reflectivity data processing, produce radar-rainfall maps with user-requested space and time resolution, and combine multiple radar data for basins covered by multiple radars. System users can select rainfall estimation algorithms that range from simple (‘Quick Look’) to complex and computing-intensive (‘Hi-Fi’). The ‘Pseudo NWS PPS’ option allows close comparison with the algorithm used operationally by the US National Weather Service. The ‘Custom’ algorithm enables expert users to specify values for many of the parameters in the algorithm modules according to their experience and expectations. The Hydro-NEXRAD system, with its rainfall-estimation algorithms, can be used by both novice and expert users who need rainfall estimates as references or as input to their hydrologic modelling and forecasting applications


2020 ◽  
Vol 10 (4) ◽  
pp. 1449
Author(s):  
Hansoo Lee ◽  
Jonggeun Kim ◽  
Eun Kyeong Kim ◽  
Sungshin Kim

Ground-based weather radar can observe a wide range with a high spatial and temporal resolution. They are beneficial to meteorological research and services by providing valuable information. Recent weather radar data related research has focused on applying machine learning and deep learning to solve complicated problems. It is a well-known fact that an adequate amount of data is a positively necessary condition in machine learning and deep learning. Generative adversarial networks (GANs) have received extensive attention for their remarkable data generation capacity, with a fascinating competitive structure having been proposed since. Consequently, a massive number of variants have been proposed; which model is adequate to solve the given problem is an inevitable concern. In this paper, we propose exploring the problem of radar image synthesis and evaluating different GANs with authentic radar observation results. The experimental results showed that the improved Wasserstein GAN is more capable of generating similar radar images while achieving higher structural similarity results.


2012 ◽  
Vol 9 (4) ◽  
pp. 4703-4746
Author(s):  
A. Wagner ◽  
J. Seltmann ◽  
H. Kunstmann

Abstract. Extensive corrections of radar data are a crucial prerequisite for radar derived climatology. This kind of climatology demands a high level of data quality. Little deviations or minor systematic underestimations or overestimations in single radar images become a major cause of error in statistical analysis. First results of radar derived climatology have emerged over the last years, as data sets of appropriate extent are becoming available. Usually, these statistics are based on time series lasting up to ten years as storage of radar data was not achieved before. We present a new statistical post-correction scheme, which is based on seven years of radar data of the Munich weather radar (2000–2006) that is operated by DWD (German Weather Service). The typical correction algorithms for single radar images, such as clutter corrections, are used. Then an additional statistical post-correction based on the results of a climatological analysis from radar images follows. The aim of this statistical correction is to correct systematic errors caused by clutter effects or measuring effects but to conserve small-scale natural variations in space. The statistical correction is based on a thorough analysis of the different causes of possible errors for the Munich weather radar. This robust analysis revealed the following basic effects: the decrease of rain rate in relation to height and distance from the radar, clutter effects such as remaining clutter, eliminated clutter or shading effects from obstacles near the radar, visible as spokes, as well as the influence of the Bright Band. The correction algorithm is correspondingly based on these results. It consists of three modules. The first one is an altitude correction, which minimizes measuring effects. The second module corrects clutter effects and the third one realizes a mean adjustment to selected rain gauges. Two different radar products are used. The statistical analysis as well as module one and module two of the correction algorithm are based on frequencies of occurrence of the so-called PX-product with six reflectivity levels. For correction module 3 and for the validation of the correction algorithm rain rates are calculated from the 8-bit-depth so-called DX-product. An application (2004–2006) and a validation (2007–2009) of this correction algorithm with rain gauges show a much higher conformity for radar climatology after the statistical correction. In the years 2004 to 2006 the Root-Mean-Square-Error (RMSE) decreases from 262 mm to 118 mm excluding those pair of values where the rain gauges are situated in areas of obviously corrupted radar data. The results for the validation period 2007 to 2009 are based on all pairs of values and show a decline of the RMSE from 322 mm to 174 mm.


Sign in / Sign up

Export Citation Format

Share Document