scholarly journals Small Multicopter-UAV-Based Radar Imaging: Performance Assessment for a Single Flight Track

2020 ◽  
Vol 12 (5) ◽  
pp. 774 ◽  
Author(s):  
Ilaria Catapano ◽  
Gianluca Gennarelli ◽  
Giovanni Ludeno ◽  
Carlo Noviello ◽  
Giuseppe Esposito ◽  
...  

This paper deals with a feasibility study assessing the reconstruction capabilities of a small Multicopter-Unmanned Aerial Vehicle (M-UAV) based radar system, whose flight positions are determined by using the Carrier-Phase Differential GPS (CDGPS) technique. The paper describes the overall radar imaging system in terms of both hardware devices and data processing strategy for the case of a single flight track. The data processing is cast as the solution of an inverse scattering problem and is able to provide focused images of on surface targets. In particular, the reconstruction is approached through the adjoint of the functional operator linking the unknown contrast function to the scattered field data, which is computed by taking into account the actual flight positions provided by the CDGPS technique. For this inverse problem, we provide an analysis of the reconstruction capabilities by showing the effect of the radar parameters, the flight altitude and the spatial offset between target and flight path on the resolution limits. A measurement campaign is carried out to demonstrate the imaging capabilities in controlled conditions. Experimental results referred to two surveys performed on the same scene but at two different UAV altitudes verify the consistency of these results with the theoretical resolution analysis.

2020 ◽  
Vol 12 (20) ◽  
pp. 3463
Author(s):  
Carlo Noviello ◽  
Giuseppe Esposito ◽  
Giancarmine Fasano ◽  
Alfredo Renga ◽  
Francesco Soldovieri ◽  
...  

The present manuscript faces the problem of performing high-resolution Unmanned Aerial Vehicle (UAV) radar imaging in sounder modality, i.e., into the vertical plane defined by the along-tack and the nadir directions. Data are collected by means of a light and compact UAV radar prototype; flight trajectory information is provided by two positioning estimation techniques: standalone Global Positioning System (GPS) and Carrier based Differential Global Positioning System (CDGPS). The radar imaging is formulated as a linear inverse scattering problem and a motion compensation (MoCo) procedure, accounting for GPS or CDGPS positioning, is adopted. The implementation of the imaging scheme, which is based on the Truncated Singular Value Decomposition, is made efficient by the Shift and Zoom approach. Two independent flight tests involving different kind of targets are considered to test the imaging strategy. The results show that the CDGPS supports suitable imaging performance in all the considered test cases. On the other hand, satisfactory performance is also possible by using standalone GPS when the meter-level positioning error exhibits small variations during the radar integration time.


2020 ◽  
Author(s):  
Carlo Noviello ◽  
Giuseppe Esposito ◽  
Ludeno Giovanni ◽  
Gennarelli Gianluca ◽  
Fasano Giancarmine ◽  
...  

<p>Nowadays, the use of Unmanned Aircraft Vehicle (UAV) based sensing technologies is widely considered in most disparate fields, including archaeology and cultural heritage inspections. The main advantages offered by UAV technology are the possibility of investigating large areas in a very short time,  the simplification of the organization and implementation of the measurement campaigns thus reducing their costs, and finally the increasing availability of autonomous systems that push more and more towards plug and fly solutions.</p><p>The widespread remote sensing technologies mounted on-board UAV systems are essentially optical, thermal and multi-spectral sensors, which are passive technologies designed to measure the signal emitted into the optical and (near and far) infrared portions of the electromagnetic spectrum. These technologies exploit techniques like aero-photogrammetry to get high resolutions images of the surface features of the investigated scene and provide useful information to evaluate structural and material degradation, such as surface cracks, humid zones and biological patinas.</p><p>Radar systems represent a further technological solution, which exploits the penetration capability into non-metallic media of the microwaves, thus offering the key advantage to perform surface and sub-surface inspections. However, UAV based radar systems are still under development due to the numerous challenges related to the acquisition modality and data processing. Being radar an active technology, both transmitting and receiving units must be installed on-board the UAV and this introduces not trivial issues related to payload and assets constrains. Moreover, in order to obtain focused images, a high precision knowledge of the UAV position during its flight must be available.</p><p>As a contribution to this topic, an ultra-light radar system mounted on a micro drone has been developed and its imaging capabilities have been assessed in controlled conditions. The UAV radar imaging system is an enhanced version of that presented in [1]. Specifically, the main components of the assembled prototype are the UAV DJI F550- hexacopter platform and the Pulson P440 radar sensor. The radar system has been equipped with two log-periodic antennas pointed at nadir, and it operates in the frequency range of [3.1, 4.8] GHz. Moreover, to accurately reconstruct the UAV platform positioning, the Differential GPS technology has been also implemented by exploiting two GPS receivers placed one onboard the platform and the other one in a fixed ground station. Finally, the data processing is cast as the solution of an inverse scattering problem by exploiting the Born Approximation to model the wave-material interaction. The results of some flight tests will be presented at the conference.</p><p>[1] G. Ludeno, I. Catapano, A. Renga, A. Vetrella, G. Fasano, and F. Soldovieri, “Assessment of a micro-UAV system for microwave tomography radar imaging”, Remote Sensing of Environment, vol 212, 2018, pp. 90-102.</p><p>Acknowledgment: The authors would like to thank the VESTA project “Valorizzazione E Salvaguardia del paTrimonio culturAle attraverso l’utilizzo di tecnologie innovative” by which the present work has been financed.</p><p> </p>


2021 ◽  
Vol 13 (23) ◽  
pp. 4897
Author(s):  
Ilaria Catapano ◽  
Carlo Noviello ◽  
Francesco Soldovieri

The paper proposes an analytical study regarding airborne radar imaging performances and accounts for a down-looking radar system moving along parallel lines far, in terms of probing wavelength, from the investigated domain and collecting multi-frequency and multi-monostatic data. The imaging problem is formulated in a constant depth plane by exploiting the Born approximation. Hence, a linear inverse scattering problem is faced by considering both the Adjoint and the Truncated Singular Value Decomposition reconstruction schemes. Analytical and simulated results are provided to state how the achievable performances depend on the measurement configuration. These results are of practical usefulness because, in operative conditions, it is unfeasible to plan a flight grid made up by a high number of closely (in terms of probing wavelength) spaced lines. Hence, the understanding of how the availability of under-sampled data affects the radar imaging allows for a trade-off between operative data collection constrains and reliable reconstructions of the scenario under test.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 45100-45112 ◽  
Author(s):  
Maria Garcia Fernandez ◽  
Yuri Alvarez Lopez ◽  
Ana Arboleya Arboleya ◽  
Borja Gonzalez Valdes ◽  
Yolanda Rodriguez Vaqueiro ◽  
...  

Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1050
Author(s):  
Won-Kwang Park

In this paper, we consider the application and analysis of subspace migration technique for a fast imaging of a set of perfectly conducting cracks with small length in two-dimensional limited-aperture inverse scattering problem. In particular, an imaging function of subspace migration with asymmetric multistatic response matrix is designed, and its new mathematical structure is constructed in terms of an infinite series of Bessel functions and the range of incident and observation directions. This is based on the structure of left and right singular vectors linked to the nonzero singular values of MSR matrix and asymptotic expansion formula due to the existence of cracks. Investigated structure of imaging function indicates that imaging performance of subspace migration is highly related to the range of incident and observation directions. The simulation results with synthetic data polluted by random noise are exhibited to support investigated structure.


Sign in / Sign up

Export Citation Format

Share Document