scholarly journals A Pragmatic Approach to the Design of Advanced Precision Terrain-Aided Navigation for UAVs and Its Verification

2020 ◽  
Vol 12 (9) ◽  
pp. 1396
Author(s):  
Jungshin Lee ◽  
Chang-Ky Sung ◽  
Juhyun Oh ◽  
Kyungjun Han ◽  
Sangwoo Lee ◽  
...  

Autonomous unmanned aerial vehicles (UAVs) require highly reliable navigation information. Generally, navigation systems with the inertial navigation system (INS) and global navigation satellite system (GNSS) have been widely used. However, the GNSS is vulnerable to jamming and spoofing. The terrain referenced navigation (TRN) technique can be used to solve this problem. In this study, to obtain reliable navigation information even if a GNSS is not available or the degree of terrain roughness is not determined, we propose a federated filter based INS/GNSS/TRN integrated navigation system. We also introduce a TRN system that combines batch processing and an auxiliary particle filter to ensure stable flight of UAVs even in a long-term GNSS-denied environment. As an altimeter sensor for the TRN system, an interferometric radar altimeter (IRA) is used to obtain reliable navigation accuracy in high altitude flight. In addition, a parallel computing technique with general purpose computing on graphics processing units (GPGPU) is applied to process a high resolution terrain database and a nonlinear filter in real-time on board. Finally, the performance of the proposed system is verified through software-in-the-loop (SIL) tests and captive flight tests in a GNSS unavailable environment.

Author(s):  
Jungshin Lee ◽  
Chang-Ky Sung ◽  
Juhyun Oh ◽  
Kyungjun Han ◽  
Sangwoo Lee ◽  
...  

Autonomous unmanned aerial vehicles (UAVs) require highly reliable navigation information. Generally, navigation systems with the inertial navigation system (INS) and global navigation satellite system (GNSS) have been widely used. However, the GNSS is vulnerable to jamming and spoofing. The terrain referenced navigation (TRN) technique can be used to solve this problem. In this study, to obtain reliable navigation information even if a GNSS is not available or the degree of terrain roughness is not determined, we propose a federated filter based INS/GNSS/TRN integrated navigation system. we also introduce a TRN system that combines batch processing and an auxiliary particle filter to ensure stable flight of UAVs even in a long-term GNSS-denied environment. As an altimeter sensor for the TRN system, we use an interferometric radar altimeter (IRA) to obtain reliable navigation accuracy in high altitude flight. In addition, a parallel computing technique with general-purpose computing on graphics processing units (GPGPU) is applied to process a high resolution terrain database and a nonlinear filter in real time on board. Finally, we verify the performance of the proposed system through software-in-the-loop (SIL) tests and captive flight tests in a GNSS unavailable environment.


Author(s):  

The schemes of navigation systems correction are considered. The operation mode of the aircraft during navigation is analyzed. An adaptive modification of the linear Kalman filter is used to correct the navigation information. An algorithm for predicting a correction signal based on a neural network in the event of a loss of a SNS correction signal is formed. Experimental results show the effectiveness of the algorithm. Keywords aircraft; inertial navigation system; satellite system; Kalman filter; neural networks; genetic algorithm


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 188 ◽  
Author(s):  
Heyone Kim ◽  
Junhak Lee ◽  
Sang Heon Oh ◽  
Hyoungmin So ◽  
Dong-Hwan Hwang

To avoid degradation of navigation performance in the navigation warfare environment, the multi-radio integrated navigation system can be used, in which all available radio navigation systems are integrated to back up Global Navigation Satellite System (GNSS) when the GNSS is not available. Before real-time multi-radio integrated navigation systems are deployed, time and cost can be saved when the modeling and simulation (M&S) software is used in the performance evaluation. When the multi-radio integrated navigation system M&S is comprised of independent function modules, it is easy to modify and/or to replace the function modules. In this paper, the M&S software design method was proposed for multi-radio integrated navigation systems as a GNSS backup under the navigation warfare. The M&S software in the proposed design method consists of a message broker and function modules. All the messages were transferred through the message broker in order to be exchanged between the function modules. The function modules in the M&S software were independently operated due to the message broker. A message broker-based M&S software was designed for a multi-radio integrated navigation system. In order to show the feasibility of the proposed design method, the M&S software was implemented for Global Positioning System (GPS), Korean Navigation Satellite System (KNSS), enhanced Long range navigation (eLoran), Loran-C, and Distance Measuring Equipment/Very high-frequency Omnidirectional Radio range (DME/VOR). The usefulness of the proposed design method was shown by checking the accuracy and availability of the GPS only navigation and the multi-radio integrated navigation system under the attack of jamming to GPS.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Junjun Tang ◽  
Peijuan Li

Considering the drawbacks that GPS signal is susceptible to obstacles and TAN becomes useless in some area when without any terrain data or with a featureless terrain field, to realize long-distance and high-precision navigation, a navigation system based on SINS/GPS/TAN/EOAN is presented. When GPS signal is available, GPS is used to correct errors of SINS; when GPS is unavailable, a terrain selection method based on the entropy weighted gray relational decision-making method is use to distinguish terrain into matchable areas and unmatchable areas; then, for the matchable areas, TAN is used to correct errors of SINS, for the unmatchable areas, EOAN is used to correct errors of SINS. The principles of SINS, GPS, TAN, and EOAN are analyzed, the mathematic models of SINS/GPS, SINS/TAN, and SINS/EOAN are constructed, and finally the federated Kalman filter is used to fuse navigation information. Simulation results show that the trajectory of SINS/GPS/TAN/EOAN is close to the ideal one in both matchable area or unmatchable area and whose navigation errors are obviously reduced, which is important for the realization of long-time and high-precision positioning.


2014 ◽  
Vol 654 ◽  
pp. 181-186 ◽  
Author(s):  
Wei Lin Yuan ◽  
Yan Ma ◽  
Hua Bo Sun

The integrated positioning system increases the visible number of single satellite navigation system and improve the DOP value of single satellite navigation system. In accordance with the construction plan, BeiDou Navigation Satellite System (BDS) has started providing continuous passive positioning, navigation and timing service in the most parts of the Asia-Pacific In this paper, DOP value of GPS, BDS and the integrated navigation system are analyzed theoretically. The improvement of DOP value of GPS which resulted from present-running BDS navigation satellites is calculated by GPS/BDS observational data. The conclusions that GPS/BDS integrated navigation system will be able to improve the positioning accuracy and have useful references for the navigation and positioning application are also obtained.


2016 ◽  
Vol 70 (2) ◽  
pp. 291-308 ◽  
Author(s):  
Qiang Xiao ◽  
Huimin Fu ◽  
Zhihua Wang ◽  
Yongbo Zhang

Accurate navigation systems are required for future pinpoint Mars landing missions. A radio ranging augmented Inertial Measurement Unit (IMU) integrated navigation system concept is considered for the Mars entry navigation. The uncertain system parameters associated with the Three Degree-Of-Freedom (3-DOF) dynamic model, and the measurement systematic errors are considered. In order to improve entry navigation accuracy, this paper presents the Multiple Model Adaptive Rank Estimation (MMARE) filter of radio beacons/IMU integrated navigation system. 3-DOF simulation results show that the performances of the proposed navigation filter method, 70·39 m estimated altitude error and 15·74 m/s estimated velocity error, fulfill the need of future pinpoint Mars landing missions.


2000 ◽  
Vol 53 (3) ◽  
pp. 425-435
Author(s):  
A. Raffetti ◽  
F. Marangon ◽  
F. Zuccarelli

This paper was first presented at the NAV99/ILA28 Conference on ‘Loran-C, Satellite and Integrated Systems for the 21st Century’ held at Church House, Westminster, London from 1–3 November 1999.The introduction of modern navigation systems highlights the need for efficient tools to assess the possible impact of these systems on the safety levels currently associated with the operation of a ship. In recent years this has led to investigation of the advanced safety/risk assessment techniques already applied in other industrial sectors, with encouraging results. The scope of this paper is to show a quantified safety assessment methodology that can be applied while designing or retrofitting navigation systems. The methodology adopted is the result of the review of the IMO Formal Safety Assessment (FSA) technique and comprises the development of a functional analysis, a hazard identification analysis and a risk assessment. The paper provides details on a specific application of this model to an integrated navigation system. This application is included in the work performed under the ATOMOS II research project, partly funded by the DGVII Directorate of the European Commission within the 4th Framework Programme in the field of Maritime Transport.


2013 ◽  
Vol 347-350 ◽  
pp. 1544-1548
Author(s):  
Zi Yu Li ◽  
Yan Liu ◽  
Ping Zhu ◽  
Cheng Ying

In multi-sensor integrated navigation systems, when sub-systems are non-linear and with Gaussian noise, the federated Kalman filter commonly used generates large error or even failure when estimating the global fusion state. This paper, taking JIDS/SINS/GPS integrated navigation system as example, proposes a federated particle filter technology to solve problems above. This technology, combining the particle filter with the federated Kalman filter, can be applied to non-linear non-Gaussian integrated system. It is proved effective in information fusion algorithm by simulated application, where the navigation information gets well fused.


2014 ◽  
Vol 68 (2) ◽  
pp. 253-273 ◽  
Author(s):  
Shifei Liu ◽  
Mohamed Maher Atia ◽  
Tashfeen B. Karamat ◽  
Aboelmagd Noureldin

Autonomous Unmanned Ground Vehicles (UGVs) require a reliable navigation system that works in all environments. However, indoor navigation remains a challenge because the existing satellite-based navigation systems such as the Global Positioning System (GPS) are mostly unavailable indoors. In this paper, a tightly-coupled integrated navigation system that integrates two dimensional (2D) Light Detection and Ranging (LiDAR), Inertial Navigation System (INS), and odometry is introduced. An efficient LiDAR-based line features detection/tracking algorithm is proposed to estimate the relative changes in orientation and displacement of the vehicle. Furthermore, an error model of INS/odometry system is derived. LiDAR-estimated orientation/position changes are fused by an Extended Kalman Filter (EKF) with those predicted by INS/odometry using the developed error model. Errors estimated by EKF are used to correct the position and orientation of the vehicle and to compensate for sensor errors. The proposed system is verified through simulation and real experiment on an UGV equipped with LiDAR, MEMS-based IMU, and encoder. Both simulation and experimental results showed that sensor errors are accurately estimated and the drifts of INS are significantly reduced leading to navigation performance of sub-metre accuracy.


Sign in / Sign up

Export Citation Format

Share Document