scholarly journals Underwater Use of a Hyperspectral Camera to Estimate Optically Active Substances in the Water Column of Freshwater Lakes

2020 ◽  
Vol 12 (11) ◽  
pp. 1745
Author(s):  
Michael Seidel ◽  
Christopher Hutengs ◽  
Felix Oertel ◽  
Daniel Schwefel ◽  
András Jung ◽  
...  

Freshwater lakes provide many important ecosystem functions and services to support biodiversity and human well-being. Proximal and remote sensing methods represent an efficient approach to derive water quality indicators such as optically active substances (OAS). Measurements of above-ground remote and in situ proximal sensors, however, are limited to observations of the uppermost water layer. We tested a hyperspectral imaging system, customized for underwater applications, with the aim to assess concentrations of chlorophyll a (CHLa) and colored dissolved organic matter (CDOM) in the water columns of four freshwater lakes with different trophic conditions in Central Germany. We established a measurement protocol that allowed consistent reflectance retrievals at multiple depths within the water column independent of ambient illumination conditions. Imaging information from the camera proved beneficial for an optimized extraction of spectral information since low signal areas in the sensor’s field of view, e.g., due to non-uniform illumination, and other interfering elements, could be removed from the measured reflectance signal for each layer. Predictive hyperspectral models, based on the 470 nm–850 nm reflectance signal, yielded estimates of both water quality parameters (R² = 0.94, RMSE = 8.9 µg L−1 for CHLa; R² = 0.75, RMSE = 0.22 m−1 for CDOM) that were more accurate than commonly applied waveband indices (R² = 0.83, RMSE = 13.2 µg L−1 for CHLa; R² = 0.66, RMSE = 0.25 m−1 for CDOM). Underwater hyperspectral imaging could thus facilitate future water monitoring efforts through the acquisition of consistent spectral reflectance measurements or derived water quality parameters along the water column, which has the potential to improve the link between above-surface proximal and remote sensing observations and in situ point-based water probe measurements for ground truthing or to resolve the vertical distribution of OAS.


2020 ◽  
Vol 12 (10) ◽  
pp. 1586
Author(s):  
Leonardo F. Arias-Rodriguez ◽  
Zheng Duan ◽  
Rodrigo Sepúlveda ◽  
Sergio I. Martinez-Martinez ◽  
Markus Disse

Remote-sensing-based machine learning approaches for water quality parameters estimation, Secchi Disk Depth (SDD) and Turbidity, were developed for the Valle de Bravo reservoir in central Mexico. This waterbody is a multipurpose reservoir, which provides drinking water to the metropolitan area of Mexico City. To reveal the water quality status of inland waters in the last decade, evaluation of MERIS imagery is a substantial approach. This study incorporated in-situ collected measurements across the reservoir and remote sensing reflectance data from the Medium Resolution Imaging Spectrometer (MERIS). Machine learning approaches with varying complexities were tested, and the optimal model for SDD and Turbidity was determined. Cross-validation demonstrated that the satellite-based estimates are consistent with the in-situ measurements for both SDD and Turbidity, with R2 values of 0.81 to 0.86 and RMSE of 0.15 m and 0.95 nephelometric turbidity units (NTU). The best model was applied to time series of MERIS images to analyze the spatial and temporal variations of the reservoir’s water quality from 2002 to 2012. Derived analysis revealed yearly patterns caused by dry and rainy seasons and several disruptions were identified. The reservoir varied from trophic to intermittent hypertrophic status, while SDD ranged from 0–1.93 m and Turbidity up to 23.70 NTU. Results suggest the effects of drought events in the years 2006 and 2009 on water quality were correlated with water quality detriment. The water quality displayed slow recovery through 2011–2012. This study demonstrates the usefulness of satellite observations for supporting inland water quality monitoring and water management in this region.



2014 ◽  
Vol 35 (14) ◽  
pp. 5434-5447 ◽  
Author(s):  
P. Minu ◽  
Aneesh A. Lotliker ◽  
S. S. Shaju ◽  
B. SanthoshKumar ◽  
P. Muhamed Ashraf ◽  
...  


2011 ◽  
Vol 66 (4) ◽  
pp. 463-472 ◽  
Author(s):  
Amr Abd-Elrahman ◽  
Matthew Croxton ◽  
Roshan Pande-Chettri ◽  
Gurpal S. Toor ◽  
Scot Smith ◽  
...  


Proceedings ◽  
2019 ◽  
Vol 48 (1) ◽  
pp. 14
Author(s):  
Gordana Kaplan ◽  
Zehra Yigit Avdan ◽  
Serdar Goncu ◽  
Ugur Avdan

In water resources management, remote sensing data and techniques are essential in watershed characterization and monitoring, especially when no data are available. Water quality is usually assessed through in-situ measurements that require high cost and time. Water quality parameters help in decision making regarding the further use of water-based on its quality. Turbidity is an important water quality parameter and an indicator of water pollution. In the past few decades, remote sensing has been widely used in water quality research. In this study, we compare turbidity parameters retrieved from a high-resolution image with in-situ measurements collected from Borabey Lake, Turkey. Here, the use of RapidEye-3 images (5 m-resolution) allows for detailed assessment of spatio-temporal evaluation of turbidity, through the normalized difference turbidity index (NDTI). The turbidity results were then compared with data from 21 in-situ measurements collected in the same period. The actual water turbidity measurements showed high correlation with the estimated NDTI mean values with an R2 of 0.84. The research findings support the use of remote sensing data of RadipEye-3 to estimate water quality parameters in small water areas. For future studies, we recommend investigating different water quality parameters using high-resolution remote sensing data.



Author(s):  
V. Hema Sailaja ◽  
P. Suman Babu ◽  
M. Anji Reddy

This paper is a research work intended to present a comprehensive water quality modeling for predicting three water quality parameters (Chlorophyll (a), Turbidity and Secchi Depth) in typical Inland lake environments (Hussain sagar and Umda sagar) using Hyperspectral Remote sensing technique. They are estimated through regression models by combining the field Spectro-radiometer reflectance values with concurrent in situ ground data (Analytical) collected in the study area and correlated and validated with the available Hyperspectral data (Hyperion).  A total of 180 in situ water sample and 900 spectral signatures were analysed during campaigns from 2010 to 2014 study period. The mean values of Chlorophyll-a varied between 6.983mgL<sup>-1</sup> and 24.858mgL<sup>-1</sup>, Turbidity varied between 16.583mgL<sup>-1</sup> and 48.867mgL<sup>-1</sup> and Secchi depth varied between 0.104mgL<sup>-1</sup> and 0.375mgL<sup>-1</sup> over the study period considering the two lakes during pre and post monsoon seasons. The band ratios of the reflected spectra at R670/R710, R710/R740 and R710/R550 are used for the development of the mathematical model of chlorophyll-a, Turbidity and Secchi depth respectively. The trained sets of the pixels extracted from the hyperspectral data for pure spectra are processed for preparing the water quality distribution maps. When subjected to multi-variant statistical tests of significance, the models have yielded satisfactory R<sup>2</sup> values. The model versus in situ analysis results demonstrated R<sup>2</sup>= 0.81% for Chlorophyll-a, R<sup>2</sup>= 0.81%  for Turbidity and R<sup>2</sup>= 0.78% for Secchi depth correlation and that of model versus satellite data exhibited R<sup>2</sup>= 0.60% for Chlorophyll-a, R<sup>2</sup>= 0.66% for Turbidity and R<sup>2</sup>= 0.65 %  for Secchi depth mean efficiency.



2015 ◽  
Vol 8 (1) ◽  
pp. 173-258 ◽  
Author(s):  
B. Nechad ◽  
K. Ruddick ◽  
T. Schroeder ◽  
K. Oubelkheir ◽  
D. Blondeau-Patissier ◽  
...  

Abstract. The use of in situ measurements is essential in the validation and evaluation of the algorithms that provide coastal water quality data products from ocean colour satellite remote sensing. Over the past decade, various types of ocean colour algorithms have been developed to deal with the optical complexity of coastal waters. Yet there is a lack of a comprehensive inter-comparison due to the availability of quality checked in situ databases. The CoastColour project Round Robin (CCRR) project funded by the European Space Agency (ESA) was designed to bring together a variety of reference datasets and to use these to test algorithms and assess their accuracy for retrieving water quality parameters. This information was then developed to help end-users of remote sensing products to select the most accurate algorithms for their coastal region. To facilitate this, an inter-comparison of the performance of algorithms for the retrieval of in-water properties over coastal waters was carried out. The comparison used three types of datasets on which ocean colour algorithms were tested. The description and comparison of the three datasets are the focus of this paper, and include the Medium Resolution Imaging Spectrometer (MERIS) Level 2 match-ups, in situ reflectance measurements and data generated by a radiative transfer model (HydroLight). These datasets are available from doi.pangaea.de/10.1594/PANGAEA.841950. The datasets mainly consisted of 6484 marine reflectance associated with various geometrical (sensor viewing and solar angles) and sky conditions and water constituents: Total Suspended Matter (TSM) and Chlorophyll a (CHL) concentrations, and the absorption of Coloured Dissolved Organic Matter (CDOM). Inherent optical properties were also provided in the simulated datasets (5000 simulations) and from 3054 match-up locations. The distributions of reflectance at selected MERIS bands and band ratios, CHL and TSM as a function of reflectance, from the three datasets are compared. Match-up and in situ sites where deviations occur are identified. The distribution of the three reflectance datasets are also compared to the simulated and in situ reflectances used previously by the International Ocean Colour Coordinating Group (IOCCG, 2006) for algorithm testing, showing a clear extension of the CCRR data which covers more turbid waters.



2020 ◽  
Vol 12 (2) ◽  
pp. 284
Author(s):  
Francisco Eugenio ◽  
Javier Marcello ◽  
Javier Martín

The accurate monitoring of water quality indicators, bathymetry and distribution of benthic habitats in vulnerable ecosystems is key to assessing the effects of climate change, the quality of natural areas and to guide appropriate biodiversity, tourism or fisheries policies. Coastal and inland water ecosystems are very complex but crucial due to their richness and primary production. In this context, remote sensing can be a reliable way to monitor these areas, mainly thanks to satellite sensors’ improved spatial and spectral capabilities and airborne or drone instruments. In general, mapping bodies of water is challenging due to low signal-to-noise (SNR) at sensor level, due to the very low reflectance of water surfaces as well as atmospheric effects. Therefore, the main objective of this work is to provide a robust processing framework to estimate water quality parameters in inland shallow waters using multiplatform data. More specifically, we measured chlorophyll concentrations (Chl-a) from multispectral and hyperspectral sensors on board satellites, aircrafts and drones. The Natural Reserve of Maspalomas, Canary Island (Spain), was chosen for the study because of its complexity as well as being an inner lagoon with considerable organic and inorganic matter and chlorophyll concentration. This area can also be considered a well-known coastal-dune ecosystem attracting a large amount of tourists. The water quality parameter estimated by the remote sensing platforms has been validated using co-temporal in situ measurements collected during field campaigns, and quite satisfactory results have been achieved for this complex ecosystem. In particular, for the drone hyperspectral instrument, the root mean square error, computed to quantify the differences between the estimated and in situ chlorophyll-a concentrations, was 3.45 with a bias of 2.96.



2020 ◽  
Author(s):  
Yu Li ◽  
Youyue Sun ◽  
Jinhui Jeanne Huang ◽  
Edward McBean

&lt;p&gt;With the increasingly prominent ecological and environmental problems in lakes, the monitoring water quality in lakes by satellite remote sensing is becoming more and more high demanding. Traditional water quality sampling is normally conducted manually and are time-consuming and labor-costly. It could not provide a full picture of the waterbodies over time due to limited sampling points and low sampling frequency. A novel attempt is proposed to use hyperspectral remote sensing in conjunction with machine learning technologies to retrieve water quality parameters and provide mapping for these parameters in a lake. The retrieval of both optically active parameters: Chlorophyll-a (CHLA) and dissolved oxygen concentration (DO), as well as non-optically active parameters: total phosphorous (TP), total nitrogen (TN), turbidity (TB), pH were studied in this research. A comparison of three machine learning algorithms including Random Forests (RF), Support Vector Regression (SVR) and Artificial Neural Networks were conducted. These water parameters collected by the Environment and Climate Change Canada agency for 20 years were used as the ground truth for model training and validation. Two set of remote sensing data from MODIS and Sentinel-2 were utilized and evaluated. This research proposed a new approach to retrieve both optically active parameters and non-optically active parameters for water body and provide new strategy for water quality monitoring.&lt;/p&gt;



2003 ◽  
Vol 27 (1) ◽  
pp. 24-43 ◽  
Author(s):  
Yansui Liu ◽  
Md Anisul Islam ◽  
Jay Gao

Quantification of quality parameters of inland and near shore waters by means of remote sensing has encountered varying degrees of success in spite of the high variability of the parameters under consideration and limitations of remote sensors themselves. This paper comprehensively evaluates the quantification of four types of water quality parameters: inorganic sediment particles, phytoplankton pigments, coloured dissolved organic material and Secchi disk depth. It concentrates on quantification requirements, as well as the options in selecting the most appropriate sensor data for the purpose. Relevant factors, such as quantification implementation and validation of the quantified results are also extensively discussed. This review reveals that the relationship between in situ samples and their corresponding remotely sensed data can be linear or nonlinear, but are nearly always site-specific. The quantification has been attempted from terrestrial satellite data largely for suspended sediments and chlorophyll concentrations. The quantification has been implemented through integration of remotely sensed imagery data, in situ water samples and ancillary data in a geographic information system (GIS). The introduction of GIS makes the quantification feasible for more variables at an increasingly higher accuracy. Affected by the number and quality of in situ samples, accuracy of quantification has been reported in different ways and varies widely.



Sign in / Sign up

Export Citation Format

Share Document