scholarly journals HY-1C Observations of the Impacts of Islands on Suspended Sediment Distribution in Zhoushan Coastal Waters, China

2020 ◽  
Vol 12 (11) ◽  
pp. 1766
Author(s):  
Lina Cai ◽  
Minrui Zhou ◽  
Jianqiang Liu ◽  
Danling Tang ◽  
Juncheng Zuo

We analyzed the impacts of islands on suspended sediment concentration (SSC) in Zhoushan Coastal waters based on data from HY-1C, which was launched in September 2018 in China, carrying Coastal Zone Imager (CZI) and Chinese Ocean Color and Temperature Scanner (COCTS) on it for offshore observation. A new SSC retrieved model was established based on the relationship between in situ SSC and the reflectance in red and near infrared bands of CZI image. Fifteen CZI images obtained from October to December 2019 were applied to retrieve SSC in Zhoushan coastal waters. The results show that SSC in study area is 100–1600 mg·L−1. The SSC near islands changes obviously. Upstream of the islands, SSC is lower than downstream. During the flood and ebb, when the current passes through the islands, circumfluence will appear, under certain geophysical factors, generating Karman vortex streets downstream of the islands. The sediments were stirred by the fast speed current at the outer side of vortex street to the sea surface inducing higher SSC at the outer side of the vortex street, while the central sediments of the vortex street were lower. In the direction of ocean currents, the SSC of the vortex street downstream of islands is changing regularly, i.e., increasing, then decreasing and increasing again and then decreasing in a snaking vortex street whose length downstream is between 1000 and 8000 m long.

2017 ◽  
Vol 49 (1) ◽  
pp. 73 ◽  
Author(s):  
Teguh Hariyanto ◽  
Trismono C. Krisna ◽  
Khomsin Khomsin ◽  
Cherie Bhekti Pribadi ◽  
Nadjadji Anwar

The decrease of coastal-water quality in the Surabaya coastal region can be recognized from the conceentration of Total Suspended Sediment(TSS ) . As a result we need a system for monitoring sediment concentration in the coastal region of Surabaya which regularly measures TSS. The principle to model and monitor TSSconcentration using remote sensing methods is by the integration of Landsat-8OLI satellites image processing using some ofTSS-models then those are analyzed for looking its suitability with TSS value direcly measured in the field ( in-situ measurement). The TSS value modeled from all algorithms validated usingcorrelation analysis and linear regression . The result shows that TSS model with the highest correlation value is TSS algorithm by Budiman (2004)with r value 0.991. Hence this algorithm can be used to investigate TSS-distribution which represent the coastal water quality of Surabaya with TSS value between 75 mg/L to 125 mg/L.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Henry Munandar Manik ◽  
Randi Firdaus

Tidung Island, located near Jakarta Bay, is a tourism and conservation area. It is necessary to keep these seawaters unpolluted. To calculate the level of pollution, it is necessary to know the sediment concentration. Quantifying concentration suspended sediment is important for knowledge of sediment transport. Researchers usually use water sample analysis and optical method for quantifying suspended sediment in seawater. Less accuracies of these methods are due to under sample of seawater and the existence of biological fouling. One promising method to measure concentration of suspended sediment is using Acoustic Doppler Current Profiler (ADCP). ADCP is usually used by oceanographer and hydrographer to measure ocean current. In this research, ADCP with 300 kHz operating frequency was used effectively to measure suspended sediment concentration (SSC) and ocean current simultaneously. The echo intensity received from suspended sediment was computed using sonar equations to quantify SSC. The empirical equation between echo intensity and SSC was found. The SSC value obtained by ADCP was also compared with in situ measurement. The result showed that quantified SSC value obtained by ADCP was nearly equal with SSC obtained from in situ measurement with coefficient correlation of 0.98. The high concentration ranged from 55 mg/L to 80 mg/L at the surface layer to a depth 12 m, moderate concentration ranged from 45 mg/L to 55 mg/L at a depth 12 m to 40 m, and low concentration less than 45 mg/L at a depth greater than 40 m. The distribution of SSC was correlated with ocean current condition. In small currents, suspended solids will settle faster so that the concentration in the water column will decrease. Conversely, if the velocity is high, suspended solids will continue to float carried by the current in the water column so that the concentration is high.


1978 ◽  
Vol 1 (16) ◽  
pp. 104 ◽  
Author(s):  
Timothy W. Kana

Suspended sediment concentration was measured in approximately 250 breaking waves on undeveloped beaches near Price Inlet, South Carolina, U.S.A., using portable in situ bulk water samplers. As many as 10 instantaneous 2-liter water volumes were obtained in each wave for a total of 1500 samples. Concentrations of suspended sediment were determined at fixed intervals of 10, 30, 60 and 100 cm above the bed for various surf zone positions relative to the breakpoint. The majority of waves sampled during 22 days in June and July, 1977 were relatively long crested, smooth, spilling to plunging in form, with breaker heights ranging from 20 to 150 cm. Surf zone process variables measured included breaker height and depth, breaker type, wave period, surface longshore current velocity, wind velocity and direction. Scatter plots of mean concentration against various process parameters indicate the amount of sediment entrained in breaking waves is primarily a function of elevation above the bed, breaker type, breaker height and distance from the breakpoint. Concentration ranged over 3 orders of magnitude up to 10 gm/1, but varied less than 1 order for samples collected under similar conditions with regard to elevation and breaker type. Plunging breakers generally entrain 1 order more sediment than spilling breakers equal in height. Despite considerable scatter, these data indicate concentration decreases with increasing wave height for waves 50 to 150 cm high, suggesting that small waves can be important in the transport of sand on gently-sloping open coasts.


Sign in / Sign up

Export Citation Format

Share Document