scholarly journals Vibration Data Processing for Bedload Monitoring in Underwater Environments

2020 ◽  
Vol 12 (17) ◽  
pp. 2797
Author(s):  
Gabriel Vasile

This paper proposes a novel data processing framework dedicated to bedload monitoring in underwater environments. After calibration, by integration the of total energy in the nominal bandwidth, the proposed experimental set-up is able to accurately measure the mass of individual sediments hitting the steel plate. This requires a priori knowledge of the vibration transients in order to match a predefined dictionary. Based on unsupervised hierarchical agglomeration of complex vibration spectra, the proposed algorithms allow accurate localization of the transients corresponding to the shocks created by sediment impacts on a steel plate.

Author(s):  
Gabriel Vasile

This paper proposes a novel data processing framework dedicated to bedload monitoring in underwater environments. After calibration, by integration the total energy in the nominal bandwidth, the proposed experimental setup is able to accurately measure the mass of individual sediments hitting the aluminum plate. This require a priori knowledge of the vibration trasients in order to match a predefined dictionary. Based on unsupervised hierarchical agglomeration of complex vibration spectra, the proposed algorithms allow to accurately localize the transients corresponding to the shocks created by sediment impacts on a steel plate.


2014 ◽  
Vol 20 (1) ◽  
pp. 163-181
Author(s):  
Nicholas Tomko ◽  
Inman Harvey ◽  
Nathaniel Virgo ◽  
Andrew Philippides

When niching or speciation is required to perform a task that has several different component parts, standard genetic algorithms (GAs) struggle. They tend to evaluate and select all individuals on the same part of the task, which leads to genetic convergence within the population. The goal of evolutionary niching methods is to enforce diversity in the population so that this genetic convergence is avoided. One drawback with some of these niching methods is that they require a priori knowledge or assumptions about the specific fitness landscape in order to work; another is that many such methods are not set up to work on cooperative tasks where fitness is only relevant at the group level. Here we address these problems by presenting the group GA, described earlier by the authors, which is a group-based evolutionary algorithm that can lead to emergent niching. After demonstrating the group GA on an immune system matching task, we extend the previous work and present two modified versions where the number of niches does not need to be specified ahead of time. In the random-group-size GA, the number of niches is varied randomly during evolution, and in the evolved-group-size GA the number of niches is optimized by evolution. This provides a framework in which we can evolve groups of individuals to collectively perform tasks with minimal a priori knowledge of how many subtasks there are or how they should be shared out.


1968 ◽  
Vol 41 (4) ◽  
pp. 890-894
Author(s):  
E. M. Bevilacqua ◽  
E. P. Percarpio

Abstract In an effort to achieve uniformity in testing and reporting skid resistance as a necessary preliminary to attempts to make improvements in roads on a rational basis, cooperative efforts have been underway over the past several years to standardize apparatus and equipment. One part of this effort has been the designation of a standard tire (ASTM E249-64T) for skid resistance testing. At the time this standard was set up important factors in skid resistance were not fully known and a composition was chosen on the basis that it was representative of actual tread stocks which have been used and had skid resistance shown by experience to be satisfactory. We have recently described evidence that the skid resistance of tires on real roads can be described absolutely in terms of properties of the tread stock which can be measured readily in the laboratory. In the course of this work we have further found evidence that the proposed standard tire is not as sensitive to variation in properties of the road as others which might be used. We have also shown that important properties of the road surface can be measured without a priori knowledge of the character of the road by the use of more than one rubber composition at the same location. Finally, we have observed that speed sensitivity of friction on road surfaces can be determined by low speed measurements. This report is therefore written to suggest that consideration be given to revision of procedures currently in view to take advantage of advances in our present state of knowledge. Since the recommendations constitute a substantial departure, they are not set forth here in specific detail, but their basis presented for consideration.


2010 ◽  
Vol 8 (1) ◽  
pp. 25
Author(s):  
Antonio Airton Carneiro De Freitas ◽  
José Roberto Securato

Random maps can be constructed from a priori knowledge of the financial assets. It is also addressed the reverse problem, i.e. from a function of an empirical stationary probability density function we set up a random map that naturally leads to an implied binomial tree, allowing the adjustment of models, including the ability to incorporate jumps. An applica- tion related to the options market is presented. It is emphasized that the quality of the model to incorporate a priori knowledge of the financial asset may be affected, for example, by the skewed vision of the analyst. (Full article available in Portuguese only)


2004 ◽  
Vol 127 (2) ◽  
pp. 275-282 ◽  
Author(s):  
Shengda Wang ◽  
Kourosh Danai ◽  
Mark Wilson

An adaptive method of helicopter track and balance is introduced to improve the search for the required blade adjustments. In this method, an interval model is used to represent the range of effect of blade adjustments on helicopter vibration, instead of exact values, to cope with the nonlinear and stochastic nature of aircraft vibration. The coefficients of the model are initially defined according to sensitivity coefficients between the blade adjustments and helicopter vibration, to include the ‘a priori’ knowledge of the process. The model coefficients are subsequently transformed into intervals and updated after each tuning iteration to improve the model’s estimation accuracy. The search for the required blade adjustments is performed according to this model by considering the vibration estimates of all of the flight regimes to provide a comprehensive solution for track and balance. The effectiveness of the proposed method is evaluated in simulation using a series of neural networks trained with actual vibration data. The results indicate that the proposed method improves performance according to several criteria representing various aspects of track and balance.


Author(s):  
Robert Audi

This book provides an overall theory of perception and an account of knowledge and justification concerning the physical, the abstract, and the normative. It has the rigor appropriate for professionals but explains its main points using concrete examples. It accounts for two important aspects of perception on which philosophers have said too little: its relevance to a priori knowledge—traditionally conceived as independent of perception—and its role in human action. Overall, the book provides a full-scale account of perception, presents a theory of the a priori, and explains how perception guides action. It also clarifies the relation between action and practical reasoning; the notion of rational action; and the relation between propositional and practical knowledge. Part One develops a theory of perception as experiential, representational, and causally connected with its objects: as a discriminative response to those objects, embodying phenomenally distinctive elements; and as yielding rich information that underlies human knowledge. Part Two presents a theory of self-evidence and the a priori. The theory is perceptualist in explicating the apprehension of a priori truths by articulating its parallels to perception. The theory unifies empirical and a priori knowledge by clarifying their reliable connections with their objects—connections many have thought impossible for a priori knowledge as about the abstract. Part Three explores how perception guides action; the relation between knowing how and knowing that; the nature of reasons for action; the role of inference in determining action; and the overall conditions for rational action.


Author(s):  
Donald C. Williams

This chapter begins with a systematic presentation of the doctrine of actualism. According to actualism, all that exists is actual, determinate, and of one way of being. There are no possible objects, nor is there any indeterminacy in the world. In addition, there are no ways of being. It is proposed that actual entities stand in three fundamental relations: mereological, spatiotemporal, and resemblance relations. These relations govern the fundamental entities. Each fundamental entity stands in parthood relations, spatiotemporal relations, and resemblance relations to other entities. The resulting picture is one that represents the world as a four-dimensional manifold of actual ‘qualitied contents’—upon which all else supervenes. It is then explained how actualism accounts for classes, quantity, number, causation, laws, a priori knowledge, necessity, and induction.


Author(s):  
Keith DeRose

In this chapter the contextualist Moorean account of how we know by ordinary standards that we are not brains in vats (BIVs) utilized in Chapter 1 is developed and defended, and the picture of knowledge and justification that emerges is explained. The account (a) is based on a double-safety picture of knowledge; (b) has it that our knowledge that we’re not BIVs is in an important way a priori; and (c) is knowledge that is easily obtained, without any need for fancy philosophical arguments to the effect that we’re not BIVs; and the account is one that (d) utilizes a conservative approach to epistemic justification. Special attention is devoted to defending the claim that we have a priori knowledge of the deeply contingent fact that we’re not BIVs, and to distinguishing this a prioritist account of this knowledge from the kind of “dogmatist” account prominently championed by James Pryor.


2021 ◽  
pp. 000276422110216
Author(s):  
Kazimierz M. Slomczynski ◽  
Irina Tomescu-Dubrow ◽  
Ilona Wysmulek

This article proposes a new approach to analyze protest participation measured in surveys of uneven quality. Because single international survey projects cover only a fraction of the world’s nations in specific periods, researchers increasingly turn to ex-post harmonization of different survey data sets not a priori designed as comparable. However, very few scholars systematically examine the impact of the survey data quality on substantive results. We argue that the variation in source data, especially deviations from standards of survey documentation, data processing, and computer files—proposed by methodologists of Total Survey Error, Survey Quality Monitoring, and Fitness for Intended Use—is important for analyzing protest behavior. In particular, we apply the Survey Data Recycling framework to investigate the extent to which indicators of attending demonstrations and signing petitions in 1,184 national survey projects are associated with measures of data quality, controlling for variability in the questionnaire items. We demonstrate that the null hypothesis of no impact of measures of survey quality on indicators of protest participation must be rejected. Measures of survey documentation, data processing, and computer records, taken together, explain over 5% of the intersurvey variance in the proportions of the populations attending demonstrations or signing petitions.


Sign in / Sign up

Export Citation Format

Share Document