scholarly journals Very Local Subsidence Near the Hot Spring Region in Hakone Volcano, Japan, Inferred from InSAR Time Series Analysis of ALOS/PALSAR Data

2020 ◽  
Vol 12 (17) ◽  
pp. 2842 ◽  
Author(s):  
Ryosuke Doke ◽  
George Kikugawa ◽  
Kazuhiro Itadera

Monitoring of surface displacement by satellite-based interferometric synthetic aperture radar (InSAR) analysis is an effective method for detecting land subsidence in areas where routes of leveling measurements are undeveloped, such as mountainous areas. In particular, InSAR-based monitoring around well-developed hot spring resorts, such as those in Japan, is useful for conserving hot spring resources. Hakone Volcano is one of the major hot spring resorts in Japan, and many hot spring wells have been developed in the Owakudani fumarole area, where a small phreatic eruption occurred in 2015. In this study, we performed an InSAR time series analysis using the small baseline subset (SBAS) method and ALOS/PALSAR scenes of the Hakone Volcano to monitor surface displacements around the volcano. The results of the SBAS-InSAR time series analysis show highly localized subsidence to the west of Owakudani from 2006–2011 when the ALOS/PALSAR satellite was operated. The area of subsidence was approximately 500 m in diameter, and the peak rate of subsidence was approximately 25 mm/year. Modeling using a point pressure source suggested that the subsidence was caused by a contraction at approximately 700 m above sea level (about 300 m below the ground surface). The rate of this contraction was estimated to be 1.04 × 104 m3/year. Hot spring water is collected from a nearby well at almost the same depth as the contraction source, and its main dissolved ion component is chloride ions, suggesting that the hydrothermal fluids are supplied from deep within the volcano. The land subsidence suggests that the fumarole activity is attenuating due to a decrease in the supply of hydrothermal fluids from deeper areas.

2020 ◽  
Vol 12 (23) ◽  
pp. 3881
Author(s):  
Ryosuke Doke ◽  
George Kikugawa ◽  
Kazuhiro Itadera

The authors wish to make the following corrections to this paper [...]


2019 ◽  
Vol 11 (12) ◽  
pp. 1466 ◽  
Author(s):  
Mingliang Gao ◽  
Huili Gong ◽  
Xiaojuan Li ◽  
Beibei Chen ◽  
Chaofan Zhou ◽  
...  

Land subsidence is a global environmental geological hazard caused by natural or human activities. The high spatial resolution and continuous time coverage of interferometric synthetic aperture radar (InSAR) time series analysis techniques provide data and a basis for the development of methods for the investigation and evolution mechanism study of regional land subsidence. Beijing, the capital city of China, has suffered from land subsidence for decades since it was first recorded in the 1950s. It was reported that uneven ground subsidence and fractures have seriously affected the normal operation of the Beijing Capital International Airport (BCIA) in recent years before the overhaul of the middle runway in April 2017. In this study, InSAR time series analysis was successfully used to detect the uneven local subsidence and ground fissure activity that has been gradually increasing in BCIA since 2010. A multi-temporal InSAR (MT-InSAR) technique was performed on 63 TerraSAR-X/TanDem-X (TSX/TDX) images acquired between 2010 and 2017, then deformation rate maps and time series for the airport area were generated. Comparisons of deformation rate and displacement time series from InSAR and ground-leveling were carried out in order to evaluate the accuracy of the InSAR-derived measurements. After an integrated analysis of the distribution characteristics of land subsidence, previous research results, and geological data was carried out, we found and located an active ground fissure. Then main cause of the ground fissures was preliminarily discussed. Finally, it can be conducted that InSAR technology can be used to identify and monitor geological processes, such as land subsidence and ground fissure activities, and can provide a scientific approach to better explore and study the cause and formation mechanism of regional subsidence and ground fissures.


2019 ◽  
Author(s):  
Eike Reinosch ◽  
Johannes Buckel ◽  
Jie Dong ◽  
Markus Gerke ◽  
Jussi Baade ◽  
...  

Abstract. Climate change and the associated rise in air temperature have affected the Tibetan Plateau to a significantly stronger degree than the global average over the past decades. This has caused deglaciation, permafrost degradation and increased precipitation, heavily changing the water balance of this region. Surface displacement processes are likely to change as the ground continues to warm up and as such it is vital to understand both seasonal and interannual processes dynamics. The Nam Co area is well suited to studying these processes via Interferometric Synthetic Aperture Radar (InSAR) time series analysis, due to its lack of higher vegetation and relatively thin snow cover. The short revisit time of the Sentinel-1 system further reduces the risk of temporal decorrelation, making it possible to produce surface displacement models with good spatial coverage. We created three different surface displacement models to study freeze-thaw processes, seasonal sliding and linear creep. Most slopes of the area are unstable, with velocities of 8 to 17 mm yr−1, and some landforms reach velocities of up to 18 cm yr−1. The monsoonal climate accelerates those movements during the summer months through high temperatures and heavy rainfall. The fastest moving landforms, some of which have been identified as rock glaciers, do not follow this seasonal pattern of accelerated velocity in summer, instead they follow a linear sliding pattern. It is unclear if this linearity is connected to the ice content in those landforms. Flat regions at Nam Co are mostly stable on a multiannual scale but some experience subsidence, which could be caused by permafrost degradation. We observe a very clear seasonal freeze-thaw cycle in the valleys, where thawing and subsequent freezing of the active layer cause a vertical oscillation of the ground of up to a few centimeters, especially near streams and other water bodies.


2013 ◽  
Vol 864-867 ◽  
pp. 2213-2217 ◽  
Author(s):  
Ju Yan Zhu ◽  
Hai Peng Guo

Due to long-term excessive exploitation of groundwater, serious land subsidence has been caused in Cangzhou City, Hebei Province, China. With GIS spatial analysis method, this paper conducted an analysis of the quantitative relationship between deep groundwater exploitation and the land subsidence in this area. This quantitative relation was analyzed by using data of both long-term and short-term time series. The long-term time series analysis indicates that the land subsidence volume accounts for 57.6% of the amount of deep groundwater exploitation, indirectly showing the proportion of released water from compressibility of the aquifers and the aquitards in deep groundwater exploitation. Some factors such as hysteresis effects of subsidence may be ignored in the short-term time series analysis, thus the calculated ratio becomes significantly large. From perspective of water resources evaluation, the long-term time series analysis is better to analyze the relation between land subsidence and deep groundwater exploitation.


2014 ◽  
Vol 155 ◽  
pp. 366-376 ◽  
Author(s):  
Feifei Qu ◽  
Qin Zhang ◽  
Zhong Lu ◽  
Chaoying Zhao ◽  
Chengsheng Yang ◽  
...  

Author(s):  
S. Rokugawa ◽  
T. Nakamura

Abstract. InSAR (Interferometric Synthetic Aperture Radar) analysis is an effective technique to map 3-dimensional surface deformation with high spatial resolution. The aim of this study was to evaluate the capability of InSAR analysis when applied to ground monitoring of an environmental disaster. We performed a time series InSAR analysis using ENVISAT/ASAR and ALOS/PALSAR data and commercial software to investigate subsidence around the Kanto District of Japan. We also investigated techniques for efficient early detection of landslides in Kyushu using time series analysis that incorporated synthetic aperture radar (SAR) images. ENVISAT/ASAR data acquired from 2003–2010 and ALOS/PALSAR data acquired from 2006–2011 were used to detect poorly expressed geomorphological deformation by conducting time series analyses of periodically acquired SAR data. In addition, to remove noise caused by geographical feature stripes or phase retardation, we applied median filtering, histogram extraction processing, and clarification of the displacement with a Laplacian filter. The main functions of the InSAR time series analysis are the calculation of phase differences between two images and the inversion with smoothness constraint for the estimation of deformation along the line of sight. The results enabled us to establish criteria for the selection of suitable InSAR data pairs, and provided the final error estimation of the derived surface deformation. The results of the analysis in the Kanto District suggested that localized areas of uplift and subsidence have occurred at irregular intervals in this area. Furthermore, the method offers the possibility of early warning of environmental disasters such as landslide and abrupt subsidence. Our results confirm the effectiveness of InSAR analysis for the monitoring of ground deformation over wide areas via the detection of localized subsidence and landslides.


Sign in / Sign up

Export Citation Format

Share Document