scholarly journals Investigating the Impact of Digital Elevation Models on Sentinel-1 Backscatter and Coherence Observations

2020 ◽  
Vol 12 (18) ◽  
pp. 3016
Author(s):  
Ignacio Borlaf-Mena ◽  
Maurizio Santoro ◽  
Ludovic Villard ◽  
Ovidiu Badea ◽  
Mihai Andrei Tanase

Spaceborne remote sensing can track ecosystems changes thanks to continuous and systematic coverage at short revisit intervals. Active remote sensing from synthetic aperture radar (SAR) sensors allows day and night imaging as they are not affected by cloud cover and solar illumination and can capture unique information about its targets. However, SAR observations are affected by the coupled effect of viewing geometry and terrain topography. The study aims to assess the impact of global digital elevation models (DEMs) on the normalization of Sentinel-1 backscattered intensity and interferometric coherence. For each DEM, we analyzed the difference between orbit tracks, the difference with results obtained with a high-resolution local DEM, and the impact on land cover classification. Tests were carried out at two sites located in mountainous regions in Romania and Spain using the SRTM (Shuttle Radar Topography Mission, 30 m), AW3D (ALOS (Advanced Land Observation Satellite) World 3D, 30 m), TanDEM-X (12.5, 30, 90 m), and Spain national ALS (aerial laser scanning) based DEM (5 m resolution). The TanDEM-X DEM was the global DEM most suitable for topographic normalization, since it provided the smallest differences between orbital tracks, up to 3.5 dB smaller than with other DEMs for peak landform, and 1.4–1.9 dB for pit and valley landforms.

2019 ◽  
Vol 8 (10) ◽  
pp. 430 ◽  
Author(s):  
Kramm ◽  
Hoffmeister

Many geoscientific computations are directly influenced by the resolution and accuracy of digital elevation models (DEMs). Therefore, knowledge about the accuracy of DEMs is essential to avoid misleading results. In this study, a comprehensive evaluation of the vertical accuracy of globally available DEMs from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Shuttle Radar Topography Mission (SRTM), Advanced Land Observing Satellite (ALOS) World 3D and TanDEM-X WorldDEM™ was conducted for a large region in Northern Chile. Additionally, several very high-resolution DEM datasets were derived from Satellite Pour l’Observation de la Terre (SPOT) 6/7 and Pléiades stereo satellite imagery for smaller areas. All datasets were evaluated with three reference datasets, namely elevation points from both Ice, Cloud, and land Elevation (ICESat) satellites, as well as very accurate high-resolution elevation data derived by unmanned aerial vehicle (UAV)-based photogrammetry and terrestrial laser scanning (TLS). The accuracy was also evaluated with regard to the existing relief by relating the accuracy results to slope, terrain ruggedness index (TRI) and topographic position index (TPI). For all datasets with global availability, the highest overall accuracies are reached by TanDEM-X WorldDEM™ and the lowest by ASTER Global DEM (GDEM). On the local scale, Pléiades DEMs showed a slightly higher accuracy as SPOT imagery. Generally, accuracy highly depends on topography and the error is rising up to four times for high resolution DEMs and up to eight times for low-resolution DEMs in steeply sloped terrain compared to flat landscapes.


2019 ◽  
Vol 11 (3) ◽  
pp. 235 ◽  
Author(s):  
Mohamed Shawky ◽  
Adel Moussa ◽  
Quazi K. Hassan ◽  
Naser El-Sheimy

Digital Elevation Models (DEMs) contribute to geomorphological and hydrological applications. DEMs can be derived using different remote sensing-based datasets, such as Interferometric Synthetic Aperture Radar (InSAR) (e.g., Advanced Land Observing Satellite (ALOS) Phased Array type L-band SAR (PALSAR) and Shuttle Radar Topography Mission (SRTM) DEMs). In addition, there is also the Digital Surface Model (DSM) derived from optical tri-stereo ALOS Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) imagery. In this study, we evaluated satellite-based DEMs, SRTM (Global) GL1 DEM V003 28.5 m, ALOS DSM 28.5 m, and PALSAR DEMs 12.5 m and 28.5 m, and their derived channel networks/orders. We carried out these assessments using Light Detection and Ranging (LiDAR) Digital Surface Models (DSMs) and Digital Terrain Models (DTMs) and their derived channel networks and Strahler orders as reference datasets at comparable spatial resolutions. We introduced a pixel-based method for the quantitative horizontal evaluation of the channel networks and Strahler orders derived from global DEMs utilizing confusion matrices at different flow accumulation area thresholds (ATs) and pixel buffer tolerance values (PBTVs) in both ±X and ±Y directions. A new Python toolbox for ArcGIS was developed to automate the introduced method. A set of evaluation metrics—(i) producer accuracy (PA), (ii) user accuracy (UA), (iii) F-score (F), and (iv) Cohen’s kappa index (KI)—were computed to evaluate the accuracy of the horizontal matching between channel networks/orders extracted from global DEMs and those derived from LiDAR DTMs and DSMs. PALSAR DEM 12.5 m ranked first among the other global DEMs with the lowest root mean square error (RMSE) and mean difference (MD) values of 4.57 m and 0.78 m, respectively, when compared to the LiDAR DTM 12.5 m. The ALOS DSM 28.5 m had the highest vertical accuracy with the lowest recorded RMSE and MD values of 4.01 m and –0.29 m, respectively, when compared to the LiDAR DSM 28.5 m. PALSAR DEM 12.5 m and ALOS DSM 28.5 m-derived channel networks/orders yielded the highest horizontal accuracy when compared to those delineated from LiDAR DTM 12.5 m and LiDAR DSM 28.5 m, respectively. The number of unmatched channels decreased when the PBTV increased from 0 to 3 pixels using different ATs.


2020 ◽  
Vol 12 (20) ◽  
pp. 3429
Author(s):  
Ziyang Xing ◽  
Zhaohui Chi ◽  
Ying Yang ◽  
Shiyi Chen ◽  
Huabing Huang ◽  
...  

Digital Elevation Models (DEMs) of Greenland provide the basic data for studying the Greenland ice sheet (GrIS), but little research quantitatively evaluates and compares the accuracy of various Greenland DEMs. This study uses IceBridge elevation data to evaluate the accuracies of the the Greenland Ice Map Project (GIMP)1 DEM, GIMP2 DEM, TanDEM-X, and ArcticDEM in their corresponding time ranges. This study also analyzes the impact of DEM accuracy and resolution on the accuracy of river network extraction. The results show that (1) within the time range covered by each DEM, TanDEM-X with an RMSE of 5.60 m has higher accuracy than the other DEMs in terms of absolute height accuracy, while GIMP1 has the lowest accuracy among the four Greenland DEMs, with an RMSE of 14.34 m. (2) Greenland DEMs are affected by regional errors and interannual changes. The accuracy in areas with elevations above 2000 m is higher than that in areas with elevations below 2000 m, and better accuracy is observed in the north than in the south. The stability of the ArcticDEM product is higher than those of the other three DEM products, and its RMSE standard deviation over multiple years is only 0.14 m. Therefore, the errors caused by the applications of DEMs with longer time spans are smaller. GIMP1 performs in an opposite manner, with a standard deviation of 2.39 m. (3) The river network extracted from TanDEM-X is close to the real river network digitized from remote sensing images, with an accuracy of 50.78%. The river network extracted from GIMP1 exhibits the largest errors, with an accuracy of only 8.83%. This study calculates and compares the accuracy of four Greenland DEMs and indicates that TanDEM-X has the highest accuracy, adding quantitative studies on the accuracy evaluation of various Greenland DEMs. This study also compares the results of different DEM river network extractions, verifies the impact of DEM accuracy on the accuracy of the river network extraction results, and provides an explorable direction for the hydrological analysis of Greenland as a whole.


Geosciences ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 360 ◽  
Author(s):  
Sansar Raj ◽  
Thimmaiah

Landslides are one of the most damaging geological hazards in mountainous regions such as the Himalayas. The Himalayan region is, tectonically, the most active region in the world that is highly vulnerable to landslides and associated hazards. Landslide susceptibility mapping (LSM) is a useful tool for understanding the probability of the spatial distribution of future landslide regions. In this research, the landslide inventory datasets were collected during the field study of the Kullu valley in July 2018, and 149 landslide locations were collected as global positioning system (GPS) points. The present study evaluates the LSM using three different spatial resolution of the digital elevation model (DEM) derived from three different sources. The data-driven traditional frequency ratio (FR) model was used for this study. The FR model was used for this research to assess the impact of the different spatial resolution of DEMs on the LSM. DEM data was derived from Advanced Land Observing Satellite-1 (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) ALOS-PALSAR for 12.5 m, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global for 30 m, and the Shuttle Radar Topography Mission (SRTM) for 90 m. As an input, we used eight landslide conditioning factors based on the study area and topographic features of the Kullu valley in the Himalayas. The ASTER-Global 30m DEM showed higher accuracy of 0.910 compared to 0.839 for 12.5 m and 0.824 for 90 m DEM resolution. This study shows that that 30 m resolution is better suited for LSM for the Kullu valley region in the Himalayas. The LSM can be used for mitigation and future planning for spatial planners and developmental authorities in the region.


Geomorphology ◽  
2016 ◽  
Vol 268 ◽  
pp. 275-287 ◽  
Author(s):  
Chuanfa Chen ◽  
Fengying Liu ◽  
Yanyan Li ◽  
Changqing Yan ◽  
Guolin Liu

Sign in / Sign up

Export Citation Format

Share Document