scholarly journals Frequency–Wavenumber Analysis of Deep Learning-based Super Resolution 3D GPR Images

2020 ◽  
Vol 12 (18) ◽  
pp. 3056
Author(s):  
Man-Sung Kang ◽  
Yun-Kyu An

This paper proposes a frequency–wavenumber (f–k) analysis technique through deep learning-based super resolution (SR) ground penetrating radar (GPR) image enhancement. GPR is one of the most popular underground investigation tools owing to its nondestructive and high-speed survey capabilities. However, arbitrary underground medium inhomogeneity and undesired measurement noises often disturb GPR data interpretation. Although the f–k analysis can be a promising technique for GPR data interpretation, the lack of GPR image resolution caused by the fast or coarse spatial scanning mechanism in reality often leads to analysis distortion. To address the technical issue, we propose the f–k analysis technique by a deep learning network in this study. The proposed f–k analysis technique incorporated with the SR GPR images generated by a deep learning network makes it possible to significantly reduce the arbitrary underground medium inhomogeneity and undesired measurement noises. Moreover, the GPR-induced electromagnetic wavefields can be decomposed for directivity analysis of wave propagation that is reflected from a certain underground object. The effectiveness of the proposed technique is numerically validated through 3D GPR simulation and experimentally demonstrated using in-situ 3D GPR data collected from urban roads in Seoul, Korea.

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 12319-12327 ◽  
Author(s):  
Shengxiang Zhang ◽  
Gaobo Liang ◽  
Shuwan Pan ◽  
Lixin Zheng

2020 ◽  
Vol 17 (6) ◽  
pp. 1961-1970
Author(s):  
Viet Khanh Ha ◽  
Jinchang Ren ◽  
Xinying Xu ◽  
Wenzhi Liao ◽  
Sophia Zhao ◽  
...  

2021 ◽  
pp. 1063293X2199808
Author(s):  
Bo Guo ◽  
Fu-Shin Lee ◽  
Chen-I Lin ◽  
Yuan-Jun Lin

This paper suggests an optimization strategy to train a CNN deep-learning network, which successfully recognizing working status on the HMI panels of CNC machines. To verify the developed strategy, the research experiments using a prototype that consists of a CNC milling machine and an industrial robot. In the optimization strategy, the research first defines a length-varying hyperparameter list for the deep-learning network, and the entities in the list adjust themselves to optimize the model scales. During the optimization process, this paper adopts a two-stage training scheme that gradually augments image datasets to improve HMI control-panel recognition performances, such as recognition accuracy and recognition speed to identify the CNC machine working status. Using an open-source PyTorch platform, this research establishes a cloud-based distributed architecture to build training codes for the deep-learning network, in which an applicable optimization model is deployed to recognize the CNC control-panel working status. The optimization strategy employs minimal codes to rebuild the architecture and the least efforts to reform the manufacturing system. The optimally trained model provides up to a 99.34% CNC panel-message recognition accuracy and a high-speed recognition of 100 images in 0.6 s. Moreover, the developed optimization strategy enables the prediction of necessitated dataset augmentation to training a practically implemented CNN network.


PLoS ONE ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. e0241313
Author(s):  
Zhengqiang Xiong ◽  
Manhui Lin ◽  
Zhen Lin ◽  
Tao Sun ◽  
Guangyi Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document