scholarly journals Error Decomposition of Remote Sensing Soil Moisture Products Based on the Triple-Collocation Method Introducing an Unbiased Reference Dataset: A Case Study on the Tibetan Plateau

2020 ◽  
Vol 12 (18) ◽  
pp. 3087
Author(s):  
Jian Kang ◽  
Rui Jin ◽  
Xin Li ◽  
Yang Zhang

Remote sensing (RS) soil moisture (SM) products have been widely used in various environmental studies. Understanding the error structure of data is necessary to properly apply RS SM products in trend and variation analysis and data fusion. However, a spatially continuous assessment of RS SM datasets is impeded by the limited spatial distribution of ground-based observations. As an alternative, the RS apparent thermal inertia (ATI) data related to the SM are transformed into SM values to expand the validation space. To obtain error components, the ATI-based SM along with the Soil Moisture Active Passive Mission (SMAP) and Advanced Microwave Scanning Radiometer 2 (AMSR2) SM are applied with the triple-collocation (TC) method to evaluate the RS SM data regarding random errors and amplitude variances at the regional scale. When the ATI-based SM is regarded as the reference data, the amplitude biases of the other two datasets are determined. The mean bias is also estimated by calculating the mean value difference between the ATI-based and validated RS SM. The results show that the ATI-based SM is a reliable source of reference data that, when combined with the TC method, can correctly estimate the error structure of RS SM datasets in wide space, promoting the reasonable application and calibration of RS SM datasets.

2020 ◽  
Vol 12 (3) ◽  
pp. 455 ◽  
Author(s):  
Yaokui Cui ◽  
Xi Chen ◽  
Wentao Xiong ◽  
Lian He ◽  
Feng Lv ◽  
...  

Surface soil moisture (SM) plays an essential role in the water and energy balance between the land surface and the atmosphere. Low spatio-temporal resolution, about 25–40 km and 2–3 days, of the commonly used global microwave SM products limits their application at regional scales. In this study, we developed an algorithm to improve the SM spatio-temporal resolution using multi-source remote sensing data and a machine-learning model named the General Regression Neural Network (GRNN). First, six high spatial resolution input variables, including Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), albedo, Digital Elevation Model (DEM), Longitude (Lon) and Latitude (Lat), were selected and gap-filled to obtain high spatio-temporal resolution inputs. Then, the GRNN was trained at a low spatio-temporal resolution to obtain the relationship between SM and input variables. Finally, the trained GRNN was driven by the high spatio-temporal resolution input variables to obtain high spatio-temporal resolution SM. We used the Fengyun-3B (FY-3B) SM over the Tibetan Plateau (TP) to test the algorithm. The results show that the algorithm could successfully improve the spatio-temporal resolution of FY-3B SM from 0.25° and 2–3 days to 0.05° and 1-day over the TP. The improved SM is consistent with the original product in terms of both spatial distribution and temporal variation. The high spatio-temporal resolution SM allows a better understanding of the diurnal and seasonal variations of SM at the regional scale, consequently enhancing ecological and hydrological applications, especially under climate change.


2019 ◽  
Vol 41 (9) ◽  
pp. 3346-3367 ◽  
Author(s):  
Mireguli Ainiwaer ◽  
Jianli Ding ◽  
Nijat Kasim ◽  
Jingzhe Wang ◽  
Jinjie Wang

2008 ◽  
Vol 12 (3) ◽  
pp. 751-767 ◽  
Author(s):  
T. Vischel ◽  
G. G. S. Pegram ◽  
S. Sinclair ◽  
W. Wagner ◽  
A. Bartsch

Abstract. The paper compares two independent approaches to estimate soil moisture at the regional scale over a 4625 km2 catchment (Liebenbergsvlei, South Africa). The first estimate is derived from a physically-based hydrological model (TOPKAPI). The second estimate is derived from the scatterometer on board the European Remote Sensing satellite (ERS). Results show a good correspondence between the modelled and remotely sensed soil moisture, particularly with respect to the soil moisture dynamic, illustrated over two selected seasons of 8 months, yielding regression R2 coefficients lying between 0.68 and 0.92. Such a close similarity between these two different, independent approaches is very promising for (i) remote sensing in general (ii) the use of hydrological models to back-calculate and disaggregate the satellite soil moisture estimate and (iii) for hydrological models to assimilate the remotely sensed soil moisture.


2018 ◽  
Vol 146 ◽  
pp. 110-121 ◽  
Author(s):  
Waheed Ullah ◽  
Guojie Wang ◽  
Zhiqiu Gao ◽  
Daniel Fiifi T. Hagan ◽  
Dan Lou

2020 ◽  
Vol 8 ◽  
Author(s):  
Huiru Jiang ◽  
Guanheng Zheng ◽  
Yonghong Yi ◽  
Deliang Chen ◽  
Wenjiang Zhang ◽  
...  

Recent climate change has induced widespread soil thawing and permafrost degradation in the Tibetan Plateau. Significant advances have been made in better characterizing Tibetan Plateau soil freeze/thaw dynamics, and their interaction with local-scale ecohydrological processes. However, factors such as sparse networks of in-situ sites and short observational period still limit our understanding of the Tibetan Plateau permafrost. Satellite-based optical and infrared remote sensing can provide information on land surface conditions at high spatial resolution, allowing for better representation of spatial heterogeneity in the Tibetan Plateau and further infer the related permafrost states. Being able to operate at “all-weather” conditions, microwave remote sensing has been widely used to retrieve surface soil moisture, freeze/thaw state, and surface deformation, that are critical to understand the Tibetan Plateau permafrost state and changes. However, coarse resolution (>10 km) of current passive microwave sensors can add large uncertainties to the above retrievals in the Tibetan Plateau area with high topographic relief. In addition, current microwave remote sensing methods are limited to detections in the upper soil layer within a few centimetres. On the other hand, algorithms that can link surface properties and soil freeze/thaw indices to permafrost properties at regional scale still need improvements. For example, most methods using InSAR (interferometric synthetic aperture radar) derived surface deformation to estimate active layer thickness either ignore the effects of vertical variability of soil water content and soil properties, or use site-specific soil moisture profiles. This can introduce non-negligible errors when upscaled to the broader Tibetan Plateau area. Integrating satellite remote sensing retrievals with process models will allow for more accurate representation of Tibetan Plateau permafrost conditions. However, such applications are still limiting due to a number of factors, including large uncertainties in current satellite products in the Tibetan Plateau area, and mismatch between model input data needs and information provided by current satellite sensors. Novel approaches to combine diverse datasets with models through model initialization, parameterization and data assimilation are needed to address the above challenges. Finally, we call for expansion of local-scale observational network, to obtain more information on deep soil temperature and moisture, soil organic carbon content, and ground ice content.


2020 ◽  
Vol 12 (15) ◽  
pp. 2414
Author(s):  
Xiao Bai ◽  
Lanhui Zhang ◽  
Chansheng He ◽  
Yi Zhu

Temporal and spatial variability of soil moisture has an important impact on hydrological processes in mountainous areas. Understanding such variability requires soil moisture datasets at multiple temporal and spatial scales. Remote sensing is a very effective method to obtain surface (~5 cm depth) soil moisture at the regional scale but cannot directly measure soil moisture at deep soil layers (>5 cm depth) currently. This study chose the upstream of the Heihe River Watershed in the Qilian Mountain Ranges in Northwest China as the study area to estimate the profile soil moisture (0–70 cm depth) at the regional scale using satellite Vegetation Index (NDVI) and Land Surface Temperature (LST) products. The study area was divided into 31 zones according to the combination of altitude, vegetation and soil type. Long-term in situ soil moisture observation stations were set up at each of the zones. Soil moisture probe, ECH2O, was used to collect soil moisture at five layers (0–10, 10–20, 20–30, 30–50 and 50–70 cm) continuously. Multiple linear regression equations of time series MODIS (Moderate-resolution Imaging Spectroradiometer) NDVI, LST and soil moisture were developed for each of the five soil layers at the 31 zones to estimate the soil moisture (0–70 cm) on a regional scale with a spatial resolution of 1 km2 and a temporal resolution of 16-d from October, 2013 to September, 2016. The correlation coefficient R of the regression equations was between 0.47 and 0.94, the RMSE was 0.03, indicating that the estimation method based on the MODIS NDVI and LST data was suitable and could be applied to alpine mountainous areas with complex topography, soil and vegetation types. The overall pattern of soil moisture spatial distribution indicated that soil moisture was higher in the eastern region than in the western region, and the soil moisture content in the whole study area was 14.5%. The algorithm and results provide novel applications of remote sensing to support soil moisture data acquisition and hydrological research in mountainous areas.


Sign in / Sign up

Export Citation Format

Share Document