scholarly journals Explicitly Identifying the Desertification Change in CMREC Area Based on Multisource Remote Data

2020 ◽  
Vol 12 (19) ◽  
pp. 3170
Author(s):  
Zemeng Fan ◽  
Saibo Li ◽  
Haiyan Fang

Explicitly identifying the desertification changes and causes has been a hot issue of eco-environment sustainable development in the China–Mongolia–Russia Economic Corridor (CMREC) area. In this paper, the desertification change patterns between 2000 and 2015 were identified by operating the classification and regression tree (CART) method with multisource remote sensing datasets on Google Earth Engine (GEE), which has the higher overall accuracy (85%) than three other methods, namely support vector machine (SVM), random forest (RF) and Albedo-normalized difference vegetation index (NDVI) models. A contribution index of climate change and human activities on desertification was introduced to quantitatively explicate the driving mechanisms of desertification change based on the temporal datasets and net primary productivity (NPP). The results show that the area of slight desertification land had increased from 719,700 km2 to 948,000 km2 between 2000 and 2015. The area of severe desertification land decreased from 82,400 km2 to 71,200 km2. The area of desertification increased by 9.68%, in which 69.68% was mainly caused by human activities. Climate change and human activities accounted for 68.8% and 27.36%, respectively, in the area of desertification restoration. In general, the degree of desertification showed a decreasing trend, and climate change was the major driving factor in the CMREC area between 2000 and 2015.

2021 ◽  
Vol 9 ◽  
Author(s):  
Dandong Cheng ◽  
Guizeng Qi ◽  
Jinxi Song ◽  
Yixuan Zhang ◽  
Hongying Bai ◽  
...  

Quantitative assessment of the contributions of climate change and human activities to vegetation change is important for ecosystem planning and management. To reveal spatial differences in the driving mechanisms of vegetation change in the Qinling Mountains, the changing patterns of the normalized difference vegetation index (NDVI) in the Qinling Mountains during 2000–2019 were investigated through trend analysis and multiple regression residuals analysis. The relative contributions of climate change and human activities on vegetation NDVI change were also quantified. The NDVI shows a significant increasing trend (0.23/10a) from 2000 to 2019 in the Qinling Mountains. The percentage of areas with increasing and decreasing trends in NDVI is 87.96% and 12.04% of the study area, respectively. The vegetation change in the Qinling Mountains is caused by a combination of climate change and human activities. The Tongguan Shiquan line is a clear dividing line in the spatial distribution of drivers of vegetation change. Regarding the vegetation improvement, the contribution of climate change and human activities to NDVI increase is 51.75% and 48.25%, respectively. In the degraded vegetation area, the contributions of climate change and human activities to the decrease in NDVI were 22.11% and 77.89%, respectively. Thus, vegetation degradation is mainly caused by human activities. The implementation of policies, such as returning farmland to forest and grass, has an important role in vegetation protection. It is suggested that further attention should be paid to the role of human activities in vegetation degradation when formulating corresponding vegetation protection measures and policies.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Long Zhao ◽  
Pan Zhang ◽  
Xiaoyi Ma ◽  
Zhuokun Pan

A timely and accurate understanding of land cover change has great significance in management of area resources. To explore the application of a daily normalized difference vegetation index (NDVI) time series in land cover classification, the present study used HJ-1 data to derive a daily NDVI time series by pretreatment. Different classifiers were then applied to classify the daily NDVI time series. Finally, the daily NDVI time series were classified based on multiclassifier combination. The results indicate that support vector machine (SVM), spectral angle mapper, and classification and regression tree classifiers can be used to classify daily NDVI time series, with SVM providing the optimal classification. The classifiers of K-means and Mahalanobis distance are not suited for classification because of their classification accuracy and mechanism, respectively. This study proposes a method of dimensionality reduction based on the statistical features of daily NDVI time series for classification. The method can be applied to land resource information extraction. In addition, an improved multiclassifier combination is proposed. The classification results indicate that the improved multiclassifier combination is superior to different single classifier combinations, particularly regarding subclassifiers with greater differences.


2021 ◽  
Vol 13 (20) ◽  
pp. 4063
Author(s):  
Jie Xue ◽  
Yanyu Wang ◽  
Hongfen Teng ◽  
Nan Wang ◽  
Danlu Li ◽  
...  

Climate change has proven to have a profound impact on the growth of vegetation from various points of view. Understanding how vegetation changes and its response to climatic shift is of vital importance for describing their mutual relationships and projecting future land–climate interactions. Arid areas are considered to be regions that respond most strongly to climate change. Xinjiang, as a typical dryland in China, has received great attention lately for its unique ecological environment. However, comprehensive studies examining vegetation change and its driving factors across Xinjiang are rare. Here, we used the remote sensing datasets (MOD13A2 and TerraClimate) and data of meteorological stations to investigate the trends in the dynamic change in the Normalized Difference Vegetation Index (NDVI) and its response to climate change from 2000 to 2019 across Xinjiang based on the Google Earth platform. We found that the increment rates of growth-season mean and maximum NDVI were 0.0011 per year and 0.0013 per year, respectively, by averaging all of the pixels from the region. The results also showed that, compared with other land use types, cropland had the fastest greening rate, which was mainly distributed among the northern Tianshan Mountains and Southern Junggar Basin and the northern margin of the Tarim Basin. The vegetation browning areas primarily spread over the Ili River Valley where most grasslands were distributed. Moreover, there was a trend of warming and wetting across Xinjiang over the past 20 years; this was determined by analyzing the climate data. Through correlation analysis, we found that the contribution of precipitation to NDVI (R2 = 0.48) was greater than that of temperature to NDVI (R2 = 0.42) throughout Xinjiang. The Standardized Precipitation and Evapotranspiration Index (SPEI) was also computed to better investigate the correlation between climate change and vegetation growth in arid areas. Our results could improve the local management of dryland ecosystems and provide insights into the complex interaction between vegetation and climate change.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3154
Author(s):  
Chenlu Huang ◽  
Qinke Yang ◽  
Hui Zhang

Qinling Mountains is the north–south boundary of China’s geography; the vegetation changes are of great significance to the survival of wildlife and the protection of species habitats. Based on Landsat products in the Google Earth Engine (GEE) platform, Pearson’s correlation coefficient method, and classification and regression models, this study analyzed the changes in NDVI (Normalized Difference Vegetation Index) in the Qinling Mountains in the past 38 years and the sensitivity of its driving factors. Finally, residual analysis method and accumulate slope change rate are used to identify the impact of human activities and climate change on NDVI. The research results show the following: (1) The NDVI value in most areas of Qinling Mountains is at a medium-to-high level, and 99.76% of the areas correspond to an increasing trend of NDVI, and the significantly increased area accounts for more than 20%. (2) From 1981 to 2019, the NDVI of the Qinling Mountains increased from 0.63 to 0.78, showing an overall upward trend, and it increased significantly after 2006. (3) Sensitivity analysis results show that the western high-altitude area of Qinling Mountain area dominated by grassland is mainly affected by precipitation. The central and southeastern parts of the Qinling Mountains are significantly affected by temperature, and they are mainly distributed in areas dominated by forest. (4) The contribution rates of climate change and human activities to NDVI are 36.04% and 63.96%, respectively. Among them, the positive impact of human activities on the NDVI of the Qinling Mountains accounted for 99.85% of the area. The area with significant positive effect accounted for 36.49%. The significant negative effect area accounts for only 0.006%, mainly distributed in urban areas and coal mining areas.


2020 ◽  
Vol 12 (24) ◽  
pp. 4119
Author(s):  
Shupu Wu ◽  
Xin Gao ◽  
Jiaqiang Lei ◽  
Na Zhou ◽  
Yongdong Wang

The ecological system of the desert/grassland biome transition zone is fragile and extremely sensitive to climate change and human activities. Analyzing the relationships between vegetation, climate factors (precipitation and temperature), and human activities in this zone can inform us about vegetation succession rules and driving mechanisms. Here, we used Landsat series images to study changes in the normalized difference vegetation index (NDVI) over this zone in the Sahel region of Africa. We selected 6315 sampling points for machine-learning training, across four types: desert, desert/grassland biome transition zone, grassland, and water bodies. We then extracted the range of the desert/grassland biome transition zone using the random forest method. We used Global Inventory Monitoring and Modelling Studies (GIMMS) data and the fifth-generation atmospheric reanalysis of the European Centre for Medium-Range Weather Forecasts (ERA5) meteorological assimilation data to explore the spatiotemporal characteristics of NDVI and climatic factors (temperature and precipitation). We used the multiple regression residual method to analyze the contributions of human activities and climate change to NDVI. The cellular automation (CA)-Markov model was used to predict the spatial position of the desert/grassland biome transition zone. From 1982 to 2015, the NDVI and temperature increased; no distinct trend was found for precipitation. The climate change and NDVI change trends both showed spatial stratified heterogeneity. Temperature and precipitation had a significant impact on NDVI in the desert/grassland biome transition zone; precipitation and NDVI were positively correlated, and temperature and NDVI were negatively correlated. Both human activities and climate factors influenced vegetation changes. The contribution rates of human activities and climate factors to the increase in vegetation were 97.7% and 48.1%, respectively. Human activities and climate factors together contributed 47.5% to this increase. The CA-Markov model predicted that the area of the desert/grassland biome transition zone in the Sahel region will expand northward and southward in the next 30 years.


2020 ◽  
Vol 12 (21) ◽  
pp. 3484 ◽  
Author(s):  
Amin Naboureh ◽  
Hamid Ebrahimy ◽  
Mohsen Azadbakht ◽  
Jinhu Bian ◽  
Meisam Amani

Timely and accurate Land Cover (LC) information is required for various applications, such as climate change analysis and sustainable development. Although machine learning algorithms are most likely successful in LC mapping tasks, the class imbalance problem is known as a common challenge in this regard. This problem occurs during the training phase and reduces classification accuracy for infrequent and rare LC classes. To address this issue, this study proposes a new method by integrating random under-sampling of majority classes and an ensemble of Support Vector Machines, namely Random Under-sampling Ensemble of Support Vector Machines (RUESVMs). The performance of RUESVMs for LC classification was evaluated in Google Earth Engine (GEE) over two different case studies using Sentinel-2 time-series data and five well-known spectral indices, including the Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Soil-Adjusted Vegetation Index (SAVI), Normalized Difference Built-up Index (NDBI), and Normalized Difference Water Index (NDWI). The performance of RUESVMs was also compared with the traditional SVM and combination of SVM with three benchmark data balancing techniques namely the Random Over-Sampling (ROS), Random Under-Sampling (RUS), and Synthetic Minority Over-sampling Technique (SMOTE). It was observed that the proposed method considerably improved the accuracy of LC classification, especially for the minority classes. After adopting RUESVMs, the overall accuracy of the generated LC map increased by approximately 4.95 percentage points, and this amount for the geometric mean of producer’s accuracies was almost 3.75 percentage points, in comparison to the most accurate data balancing method (i.e., SVM-SMOTE). Regarding the geometric mean of users’ accuracies, RUESVMs also outperformed the SVM-SMOTE method with an average increase of 6.45 percentage points.


2021 ◽  
Vol 13 (17) ◽  
pp. 3516
Author(s):  
Jianfang Kang ◽  
Yaonan Zhang ◽  
Asim Biswas

Land degradation and development (LDD) has become an urgent global issue. Quick and accurate monitoring of LDD dynamics is key to the sustainability of land resources. By integrating normalized difference vegetation index (NDVI) and net primary productivity (NPP) based on the Euclidean distance method, a LDD index (LDDI) was introduced to detect LDD processes, and to explore its quantitative relationship with climate change and human activity in China from 1985 to 2015. Overall, China has experienced significant land development, about 45% of China’s mainland, during the study period. Climate change (temperature and precipitation) played limited roles in the affected LDD, while human activity was the dominant driving force. Specifically, LDD caused by human activity accounted for about 58% of the total, while LDD caused by climate change only accounted for 0.34% of the total area. Results from the present study can provide insight into LDD processes and their driving factors and promote land sustainability in China and around the world.


2019 ◽  
Vol 11 (1) ◽  
pp. 100 ◽  
Author(s):  
Dyah R. Panuju ◽  
David J. Paull ◽  
Bambang H. Trisasongko

This research aims to detect subtle changes by combining binary change analysis, the Iteratively Reweighted Multivariate Alteration Detection (IRMAD), over dual polarimetric Advanced Land Observing Satellite (ALOS) backscatter with augmented data for post-classification change analysis. The accuracy of change detection was iteratively evaluated based on thresholds composed of mean and a range constant of standard deviation. Four datasets were examined for post-classification change analysis including the dual polarimetric backscatter as the benchmark and its augmented data with indices, entropy alpha decomposition and selected texture features. Variable importance was then evaluated to build a best subset model employing seven classifiers, including Bagged Classification and Regression Tree (CAB), Extreme Learning Machine Neural Network (ENN), Bagged Multivariate Adaptive Regression Spline (MAB), Regularised Random Forest (RFG), Original Random Forest (RFO), Support Vector Machine (SVM), and Extreme Gradient Boosting Tree (XGB). The best accuracy was 98.8%, which resulted from thresholding MAD variate-2 with constants at 1.7. The highest improvement of classification accuracy was obtained by amending the grey level co-occurrence matrix (GLCM) texture. The identification of variable importance (VI) confirmed that selected GLCM textures (mean and variance of HH or HV) were equally superior, while the contribution of index and decomposition were negligible. The best model produced similar classification accuracy at about 90% for both years 2007 and 2010. Tree-based algorithms including RFO, RFG and XGB were more robust than SVM and ENN. Subtle changes indicated by binary change analysis were somewhat hidden in post-classification analysis. Reclassification by combining all important variables and adding five classes to include subtle changes assisted by Google Earth yielded an accuracy of 82%.


2021 ◽  
Vol 13 (21) ◽  
pp. 4326
Author(s):  
Yu Liu ◽  
Jiyang Tian ◽  
Ronghua Liu ◽  
Liuqian Ding

The spatiotemporal evolution of vegetation and its influencing factors can be used to explore the relationships among vegetation, climate change, and human activities, which are of great importance for guiding scientific management of regional ecological environments. In recent years, remote sensing technology has been widely used in dynamic monitoring of vegetation. In this study, the normalized difference vegetation index (NDVI) and standardized precipitation‒evapotranspiration index (SPEI) from 1998 to 2017 were used to study the spatiotemporal variation of NDVI in China. The influences of climate change and human activities on NDVI variation were investigated based on the Mann–Kendall test, correlation analysis, and other methods. The results show that the growth rate of NDVI in China was 0.003 year−1. Regions with improved and degraded vegetation accounted for 71.02% and 22.97% of the national territorial area, respectively. The SPEI decreased in 60.08% of the area and exhibited an insignificant drought trend overall. Human activities affected the vegetation cover in the directions of both destruction and restoration. As the elevation and slope increased, the correlation between NDVI and SPEI gradually increased, whereas the impact of human activities on vegetation decreased. Further studies should focus on vegetation changes in the Continental Basin, Southwest Rivers, and Liaohe River Basin.


Author(s):  
J. D. Mohite ◽  
S. A. Sawant ◽  
A. Pandit ◽  
S. Pappula

Abstract. The current study focuses on the estimation of cloud-free Normalized Difference Vegetation Index (NDVI) using the Synthetic Aperture Radar (SAR) observations obtained from Sentinel-1 (A and B) sensor. South-West Summer Monsoon over the Indian sub-continent lasts for four months (mid-June to mid-October). During this time, optical remote sensing observations are affected by dense cloud cover. Therefore, there is a need for methodology to estimate state of vegetation during the cloud cover. The crops considered in this study are Paddy (Rice) from Punjab and Haryana, whereas Cotton, Turmeric, and Banana from Andhra Pradesh, India. We have considered, observations of Sentinel-1 and Sentinel-2 sensors with the same overpass day and non-cloudy pixels for each crop. We used Google Earth Engine to extract surface reflectance for the Sentinel-2 and Ground Range Detected (GRD) backscatter for Sentinel-1. The Red and NIR bands of Sentinel 2 were used to estimate NDVI. Sentinel-1 based VV, and VH backscatter was used for estimation of Normalized Ratio Procedure between Bands (NRPB). Regression analysis was performed by using NDVI as an independent variable, and VV, VH, NRPB, and radar incidence angle as dependant variables. We evaluated the performance of Linear regression with tuned Support Vector Regression (SVR) as well as tuned Random Forest Regression (RFR) using the independent data. Results showed that the RFR produced the lowest RMSE for all the crops in the study. The average RMSE using the RFR was 0.08, 0.09, 0.11, and 0.10 for Rice, Cotton, Banana, and Turmeric, respectively. Similarly, we have obtained R2 values of 0.79, 0.76, 0.69, and 0.71 for the same crops using the RFR. A model with 80 trees produced the best results for Rice and Cotton, whereas the model with 90 trees produced the best results for Banana and Turmeric. Analysis with NDVI threshold of 0.25 showed improved R2 and RMSE. We found that for grown crop canopy, SAR based NDVI estimates are reasonably matching with the optical NDVI. A good agreement was observed between the actual and estimated NDVI using the tuned RFR model.


Sign in / Sign up

Export Citation Format

Share Document