scholarly journals Temporal and Spatial Variation of NDVI and Its Driving Factors in Qinling Mountain

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3154
Author(s):  
Chenlu Huang ◽  
Qinke Yang ◽  
Hui Zhang

Qinling Mountains is the north–south boundary of China’s geography; the vegetation changes are of great significance to the survival of wildlife and the protection of species habitats. Based on Landsat products in the Google Earth Engine (GEE) platform, Pearson’s correlation coefficient method, and classification and regression models, this study analyzed the changes in NDVI (Normalized Difference Vegetation Index) in the Qinling Mountains in the past 38 years and the sensitivity of its driving factors. Finally, residual analysis method and accumulate slope change rate are used to identify the impact of human activities and climate change on NDVI. The research results show the following: (1) The NDVI value in most areas of Qinling Mountains is at a medium-to-high level, and 99.76% of the areas correspond to an increasing trend of NDVI, and the significantly increased area accounts for more than 20%. (2) From 1981 to 2019, the NDVI of the Qinling Mountains increased from 0.63 to 0.78, showing an overall upward trend, and it increased significantly after 2006. (3) Sensitivity analysis results show that the western high-altitude area of Qinling Mountain area dominated by grassland is mainly affected by precipitation. The central and southeastern parts of the Qinling Mountains are significantly affected by temperature, and they are mainly distributed in areas dominated by forest. (4) The contribution rates of climate change and human activities to NDVI are 36.04% and 63.96%, respectively. Among them, the positive impact of human activities on the NDVI of the Qinling Mountains accounted for 99.85% of the area. The area with significant positive effect accounted for 36.49%. The significant negative effect area accounts for only 0.006%, mainly distributed in urban areas and coal mining areas.

2020 ◽  
Vol 12 (19) ◽  
pp. 3170
Author(s):  
Zemeng Fan ◽  
Saibo Li ◽  
Haiyan Fang

Explicitly identifying the desertification changes and causes has been a hot issue of eco-environment sustainable development in the China–Mongolia–Russia Economic Corridor (CMREC) area. In this paper, the desertification change patterns between 2000 and 2015 were identified by operating the classification and regression tree (CART) method with multisource remote sensing datasets on Google Earth Engine (GEE), which has the higher overall accuracy (85%) than three other methods, namely support vector machine (SVM), random forest (RF) and Albedo-normalized difference vegetation index (NDVI) models. A contribution index of climate change and human activities on desertification was introduced to quantitatively explicate the driving mechanisms of desertification change based on the temporal datasets and net primary productivity (NPP). The results show that the area of slight desertification land had increased from 719,700 km2 to 948,000 km2 between 2000 and 2015. The area of severe desertification land decreased from 82,400 km2 to 71,200 km2. The area of desertification increased by 9.68%, in which 69.68% was mainly caused by human activities. Climate change and human activities accounted for 68.8% and 27.36%, respectively, in the area of desertification restoration. In general, the degree of desertification showed a decreasing trend, and climate change was the major driving factor in the CMREC area between 2000 and 2015.


2020 ◽  
Vol 12 (22) ◽  
pp. 3780
Author(s):  
Ting Chen ◽  
Jun Xia ◽  
Lei Zou ◽  
Si Hong

The Hanjiang River Basin (HJRB) is an important source area for drinking water in Hubei Province, China, and the vegetation coverage there is important to the ecological system. Due to the spatial heterogeneity and synergistic effect of various factors, it is very difficult to identify the main factors affecting vegetation growth in the HJRB. With the normalized difference vegetation index (NDVI) data from 2001 to 2018 in the HJRB, the spatiotemporal patterns of NDVI and the influences of natural factors and human activities on NDVI were investigated and quantified based on the Mann-Kendall (M-K) test, partial correlation analysis, and Geographical Detector. The individual factors and their interactions and the range/type of factor attributes suitable for vegetation growth were also examined. NDVI in the HJRB increased from 2001 to 2018, and the variation rate was 0.0046 year−1. NDVI was increasing in 81.17% of the area (p < 0.05). Elevation and slope can effectively explain the vegetation distribution. The interactions of factors on NDVI were significant, and the interactions of the elevation and precipitation can maximize the impact among all factors. The range of available landforms is thought to be highly conducive to vegetation growth. The rates of the annual precipitation and annual mean temperature changed from 2001 to 2018, which were 3.665 mm/year and 0.017 °C/year, and the regions where NDVI positively correlated with them were over 85%. Contrary to the general trend, NDVI has obviously decreased in urban areas since 2010. The quantitative findings of this study can help us better understand the effects of various factors on vegetation growth and provide appropriate suggestions for vegetation protection and restoration in the HJRB.


2020 ◽  
Vol 12 (24) ◽  
pp. 4035
Author(s):  
Xiaohui Zhai ◽  
Xiaolei Liang ◽  
Changzhen Yan ◽  
Xuegang Xing ◽  
Haowei Jia ◽  
...  

In recent decades, the vegetation of the Sanjiangyuan region has undergone a series of changes under the influence of climate change, and ecological restoration projects have been implemented. In this paper, we analyze the spatiotemporal dynamics of vegetation in this region using the satellite-retrieved normalized difference vegetation index (NDVI) from the global inventory modeling and mapping studies (GIMMS) and moderate resolution imaging and spectroradiometer (MODIS) datasets during the past 34 years. Specifically, the characteristics of vegetation changes were analyzed according to the stage of implementation of different ecological engineering programs. The results are as follows. (1) The vegetation in 65.6% of the study area exhibited an upward trend, and in 53.0% of the area, it displayed a large increase, which was mainly distributed in the eastern part of the study area. (2) The vegetation NDVI increased to differing degrees during stages of ecological engineering. (3) The NDVI in the western part of the Sanjiangyuan region is mainly affected by temperature, while in the northeastern part, the NDVI is affected more by precipitation. In the southern part, however, vegetation growth is affected neither by temperature nor by precipitation. On the whole region, vegetation growing is more affected by temperature than by precipitation. (4) The impacts of human activities on vegetation change are both positive and negative. In recent years, ecological engineering projects have had a positive impact on vegetation growth. This study can help us to correctly understand the impact of climate change on vegetation growth, so as to provide a scientific basis for the evaluation of regional ecological engineering effectiveness and the formulation of ecological protection policies.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dandong Cheng ◽  
Guizeng Qi ◽  
Jinxi Song ◽  
Yixuan Zhang ◽  
Hongying Bai ◽  
...  

Quantitative assessment of the contributions of climate change and human activities to vegetation change is important for ecosystem planning and management. To reveal spatial differences in the driving mechanisms of vegetation change in the Qinling Mountains, the changing patterns of the normalized difference vegetation index (NDVI) in the Qinling Mountains during 2000–2019 were investigated through trend analysis and multiple regression residuals analysis. The relative contributions of climate change and human activities on vegetation NDVI change were also quantified. The NDVI shows a significant increasing trend (0.23/10a) from 2000 to 2019 in the Qinling Mountains. The percentage of areas with increasing and decreasing trends in NDVI is 87.96% and 12.04% of the study area, respectively. The vegetation change in the Qinling Mountains is caused by a combination of climate change and human activities. The Tongguan Shiquan line is a clear dividing line in the spatial distribution of drivers of vegetation change. Regarding the vegetation improvement, the contribution of climate change and human activities to NDVI increase is 51.75% and 48.25%, respectively. In the degraded vegetation area, the contributions of climate change and human activities to the decrease in NDVI were 22.11% and 77.89%, respectively. Thus, vegetation degradation is mainly caused by human activities. The implementation of policies, such as returning farmland to forest and grass, has an important role in vegetation protection. It is suggested that further attention should be paid to the role of human activities in vegetation degradation when formulating corresponding vegetation protection measures and policies.


2016 ◽  
Vol 30 (1) ◽  
pp. 113-117 ◽  
Author(s):  
Małgorzata Sobczyk ◽  
Maciej Mrowiec

AbstractClimate change causes a more frequent occurrence of extreme events. The result of these phenomena is the occurrence of floods and flooding, and periods of drought. Particularly unfavorable is intensive rainfall over the urban catchments. To prevent the negative consequences of these phenomena, unconventional solutions should be used. The use of green roofs in urban areas will serve the sustainable development of cities and the impact on local ecological changes. The study was performed at two green roof platforms 1.2×1.2×0.1 m each. An analysis was performed at different intensities given for precipitation. 20 min for the rain to stop was observed from 68 to 100% precipitation. The study was divided into two parts. The first part of the study has been performed in the dry period. In contrast, another round of tests was repeated in other conditions after rainfall. The amount of water at two experimental green roofs platforms before the test was 11.0 dm3. The research relates to the impact of green roofs on local hydrological changes. Development of technologies for green roofs had a positive impact on mitigating the effects of climate change associated with the occurrence of flooding the city.


2021 ◽  
Vol 13 (21) ◽  
pp. 4326
Author(s):  
Yu Liu ◽  
Jiyang Tian ◽  
Ronghua Liu ◽  
Liuqian Ding

The spatiotemporal evolution of vegetation and its influencing factors can be used to explore the relationships among vegetation, climate change, and human activities, which are of great importance for guiding scientific management of regional ecological environments. In recent years, remote sensing technology has been widely used in dynamic monitoring of vegetation. In this study, the normalized difference vegetation index (NDVI) and standardized precipitation‒evapotranspiration index (SPEI) from 1998 to 2017 were used to study the spatiotemporal variation of NDVI in China. The influences of climate change and human activities on NDVI variation were investigated based on the Mann–Kendall test, correlation analysis, and other methods. The results show that the growth rate of NDVI in China was 0.003 year−1. Regions with improved and degraded vegetation accounted for 71.02% and 22.97% of the national territorial area, respectively. The SPEI decreased in 60.08% of the area and exhibited an insignificant drought trend overall. Human activities affected the vegetation cover in the directions of both destruction and restoration. As the elevation and slope increased, the correlation between NDVI and SPEI gradually increased, whereas the impact of human activities on vegetation decreased. Further studies should focus on vegetation changes in the Continental Basin, Southwest Rivers, and Liaohe River Basin.


2020 ◽  
Author(s):  
Yahai Zhang ◽  
Aizhong Ye

&lt;p&gt;&amp;#160; &amp;#160; &amp;#160; &amp;#160; Knowledge of the current severe global environmental changes, vegetation has faced the dual challenges posed by climate change and human activities. Quantitatively distinguishing the influence of climate change and human activities on vegetation changes is a key to develop adaptive ecological protection policies. This study used the Normalized Difference Vegetation Index (NDVI) and meteorological data from 1982 to 2015 to analyze the characteristic of vegetation changes and the relationship with climate factors in Mainland China. The contribution rates of climate change and human activities to vegetation dynamics are further calculated by the improved trend method of residual analysis. The results show that 68.81% vegetation of Mainland China is in a state of sustainable increase and cultivated vegetation (CV) and grass are the main greening vegetation types. The impact of human activities (54.45%-75.27%) on vegetation changes in Mainland China is higher than climate change (24.73%-45.46%). Human activities mainly affect grass, mixed coniferous broad-leaved forest (MCBF) and cultivated vegetation (CV), while swamp is more sensitive to climate change. The improved residual trend method considering temporal and spatial dimensions can reduce the uncertainty of the methods. This study provides a theoretical basis for future government implementation of ecological management.&lt;/p&gt;


Author(s):  
S. A. Lysenko

The spatial and temporal particularities of Normalized Differential Vegetation Index (NDVI) changes over territory of Belarus in the current century and their relationship with climate change were investigated. The rise of NDVI is observed at approximately 84% of the Belarus area. The statistically significant growth of NDVI has exhibited at nearly 35% of the studied area (t-test at 95% confidence interval), which are mainly forests and undeveloped areas. Croplands vegetation index is largely descending. The main factor of croplands bio-productivity interannual variability is precipitation amount in vegetation period. This factor determines more than 60% of the croplands NDVI dispersion. The long-term changes of NDVI could be explained by combination of two factors: photosynthesis intensifying action of carbon dioxide and vegetation growth suppressing action of air warming with almost unchanged precipitation amount. If the observed climatic trend continues the croplands bio-productivity in many Belarus regions could be decreased at more than 20% in comparison with 2000 year. The impact of climate change on the bio-productivity of undeveloped lands is only slightly noticed on the background of its growth in conditions of rising level of carbon dioxide in the atmosphere.


2020 ◽  
Vol 13 (1) ◽  
pp. 10
Author(s):  
Andrea Sulova ◽  
Jamal Jokar Arsanjani

Recent studies have suggested that due to climate change, the number of wildfires across the globe have been increasing and continue to grow even more. The recent massive wildfires, which hit Australia during the 2019–2020 summer season, raised questions to what extent the risk of wildfires can be linked to various climate, environmental, topographical, and social factors and how to predict fire occurrences to take preventive measures. Hence, the main objective of this study was to develop an automatized and cloud-based workflow for generating a training dataset of fire events at a continental level using freely available remote sensing data with a reasonable computational expense for injecting into machine learning models. As a result, a data-driven model was set up in Google Earth Engine platform, which is publicly accessible and open for further adjustments. The training dataset was applied to different machine learning algorithms, i.e., Random Forest, Naïve Bayes, and Classification and Regression Tree. The findings show that Random Forest outperformed other algorithms and hence it was used further to explore the driving factors using variable importance analysis. The study indicates the probability of fire occurrences across Australia as well as identifies the potential driving factors of Australian wildfires for the 2019–2020 summer season. The methodical approach and achieved results and drawn conclusions can be of great importance to policymakers, environmentalists, and climate change researchers, among others.


Author(s):  
Shaden A. M. Khalifa ◽  
Mahmoud M. Swilam ◽  
Aida A. Abd El-Wahed ◽  
Ming Du ◽  
Haged H. R. El-Seedi ◽  
...  

The COVID-19 pandemic is a serious challenge for societies around the globe as entire populations have fallen victim to the infectious spread and have taken up social distancing. In many countries, people have had to self-isolate and to be confined to their homes for several weeks to months to prevent the spread of the virus. Social distancing measures have had both negative and positive impacts on various aspects of economies, lifestyles, education, transportation, food supply, health, social life, and mental wellbeing. On other hands, due to reduced population movements and the decline in human activities, gas emissions decreased and the ozone layer improved; this had a positive impact on Earth’s weather and environment. Overall, the COVID-19 pandemic has negative effects on human activities and positive impacts on nature. This study discusses the impact of the COVID-19 pandemic on different life aspects including the economy, social life, health, education, and the environment.


Sign in / Sign up

Export Citation Format

Share Document