scholarly journals Analyzing Daily Estimation of Forest Gross Primary Production Based on Harmonized Landsat-8 and Sentinel-2 Product Using SCOPE Process-Based Model

2020 ◽  
Vol 12 (22) ◽  
pp. 3773
Author(s):  
Rahul Raj ◽  
Bagher Bayat ◽  
Petr Lukeš ◽  
Ladislav Šigut ◽  
Lucie Homolová

Vegetation top-of-canopy reflectance contains valuable information for estimating vegetation biochemical and structural properties, and canopy photosynthesis (gross primary production (GPP)). Satellite images allow studying temporal variations in vegetation properties and photosynthesis. The National Aeronautics and Space Administration (NASA) has produced a harmonized Landsat-8 and Sentinel-2 (HLS) data set to improve temporal coverage. In this study, we aimed to explore the potential and investigate the information content of the HLS data set using the Soil Canopy Observation of Photosynthesis and Energy fluxes (SCOPE) model to retrieve the temporal variations in vegetation properties, followed by the GPP simulations during the 2016 growing season of an evergreen Norway spruce dominated forest stand. We optimized the optical radiative transfer routine of the SCOPE model to retrieve vegetation properties such as leaf area index and leaf chlorophyll, water, and dry matter contents. The results indicated percentage differences less than 30% between the retrieved and measured vegetation properties. Additionally, we compared the retrievals from HLS data with those from hyperspectral airborne data for the same site, showing that HLS data preserve a considerable amount of information about the vegetation properties. Time series of vegetation properties, retrieved from HLS data, served as the SCOPE inputs for the time series of GPP simulations. The SCOPE model reproduced the temporal cycle of local flux tower measurements of GPP, as indicated by the high Nash–Sutcliffe efficiency value (>0.5). However, GPP simulations did not significantly change when we ran the SCOPE model with constant vegetation properties during the growing season. This might be attributed to the low variability in the vegetation properties of the evergreen forest stand within a vegetation season. We further observed that the temporal variation in maximum carboxylation capacity had a pronounced effect on GPP simulations. We focused on an evergreen forest stand. Further studies should investigate the potential of HLS data across different forest types, such as deciduous stand.

2019 ◽  
Vol 11 (3) ◽  
pp. 328 ◽  
Author(s):  
Qiang Zhou ◽  
Jennifer Rover ◽  
Jesslyn Brown ◽  
Bruce Worstell ◽  
Danny Howard ◽  
...  

Remotely monitoring changes in central U.S. grasslands is challenging because these landscapes tend to respond quickly to disturbances and changes in weather. Such dynamic responses influence nutrient cycling, greenhouse gas contributions, habitat availability for wildlife, and other ecosystem processes and services. Traditionally, coarse-resolution satellite data acquired at daily intervals have been used for monitoring. Recently, the harmonized Landsat-8 and Sentinel-2 (HLS) data increased the temporal frequency of the data. Here we investigated if the increased data frequency provided adequate observations to characterize highly dynamic grassland processes. We evaluated HLS data available for 2016 to (1) determine if data from Sentinel-2 contributed to an improvement in characterizing landscape processes over Landsat-8 data alone, and (2) quantify how observation frequency impacted results. Specifically, we investigated into estimating annual vegetation phenology, detecting burn scars from fire, and modeling within-season wetland hydroperiod and growth of aquatic vegetation. We observed increased sensitivity to the start of the growing season (SOST) with the HLS data. Our estimates of the grassland SOST compared well with ground estimates collected at a phenological camera site. We used the Continuous Change Detection and Classification (CCDC) algorithm to assess if the HLS data improved our detection of burn scars following grassland fires and found that detection was considerably influenced by the seasonal timing of the fires. The grassland burned in early spring recovered too quickly to be detected as change events by CCDC; instead, the spectral characteristics following these fires were incorporated as part of the ongoing time-series models. In contrast, the spectral effects from late-season fires were detected both by Landsat-8 data and HLS data. For wetland-rich areas, we used a modified version of the CCDC algorithm to track within-season dynamics of water and aquatic vegetation. The addition of Sentinel-2 data provided the potential to build full time series models to better distinguish different wetland types, suggesting that the temporal density of data was sufficient for within-season characterization of wetland dynamics. Although the different data frequency, in both the spatial and temporal dimensions, could cause inconsistent model estimation or sensitivity sometimes; overall, the temporal frequency of the HLS data improved our ability to track within-season grassland dynamics and improved results for areas prone to cloud contamination. The results suggest a greater frequency of observations, such as from harmonizing data across all comparable Landsat and Sentinel sensors, is still needed. For our study areas, at least a 3-day revisit interval during the early growing season (weeks 14–17) is required to provide a >50% probability of obtaining weekly clear observations.


2020 ◽  
Vol 12 (11) ◽  
pp. 1876 ◽  
Author(s):  
Katsuto Shimizu ◽  
Tetsuji Ota ◽  
Nobuya Mizoue ◽  
Hideki Saito

Developing accurate methods for estimating forest structures is essential for efficient forest management. The high spatial and temporal resolution data acquired by CubeSat satellites have desirable characteristics for mapping large-scale forest structural attributes. However, most studies have used a median composite or single image for analyses. The multi-temporal use of CubeSat data may improve prediction accuracy. This study evaluates the capabilities of PlanetScope CubeSat data to estimate canopy height derived from airborne Light Detection and Ranging (LiDAR) by comparing estimates using Sentinel-2 and Landsat 8 data. Random forest (RF) models using a single composite, multi-seasonal composites, and time-series data were investigated at different spatial resolutions of 3, 10, 20, and 30 m. The highest prediction accuracy was obtained by the PlanetScope multi-seasonal composites at 3 m (relative root mean squared error: 51.3%) and Sentinel-2 multi-seasonal composites at the other spatial resolutions (40.5%, 35.2%, and 34.2% for 10, 20, and 30 m, respectively). The results show that RF models using multi-seasonal composites are 1.4% more accurate than those using harmonic metrics from time-series data in the median. PlanetScope is recommended for canopy height mapping at finer spatial resolutions. However, the unique characteristics of PlanetScope data in a spatial and temporal context should be further investigated for operational forest monitoring.


2021 ◽  
Vol 13 (21) ◽  
pp. 4465
Author(s):  
Yu Shen ◽  
Xiaoyang Zhang ◽  
Weile Wang ◽  
Ramakrishna Nemani ◽  
Yongchang Ye ◽  
...  

Accurate and timely land surface phenology (LSP) provides essential information for investigating the responses of terrestrial ecosystems to climate changes and quantifying carbon and surface energy cycles on the Earth. LSP has been widely investigated using daily Visible Infrared Imaging Radiometer Suite (VIIRS) or Moderate Resolution Imaging Spectroradiometer (MODIS) observations, but the resultant phenometrics are frequently influenced by surface heterogeneity and persistent cloud contamination in the time series observations. Recently, LSP has been derived from Landsat-8 and Sentinel-2 time series providing detailed spatial pattern, but the results are of high uncertainties because of poor temporal resolution. With the availability of data from Advanced Baseline Imager (ABI) onboard a new generation of geostationary satellites that observe the earth every 10–15 min, daily cloud-free time series could be obtained with high opportunities. Therefore, this study investigates the generation of synthetic high spatiotemporal resolution time series by fusing the harmonized Landsat-8 and Sentinel-2 (HLS) time series with the temporal shape of ABI data for monitoring field-scale (30 m) LSP. The algorithm is verified by detecting the timings of greenup and senescence onsets around north Wisconsin/Michigan states, United States, where cloud cover is frequent during spring rainy season. The LSP detections from HLS-ABI are compared with those from HLS or ABI alone and are further evaluated using PhenoCam observations. The result indicates that (1) ABI could provide ~3 times more high-quality observations than HLS around spring greenup onset; (2) the greenup and senescence onsets derived from ABI and HLS-ABI are spatially consistent and statistically comparable with a median difference less than 1 and 10-days, respectively; (3) greenup and senescence onsets derived from HLS data show sharp boundaries around the orbit-overlapped areas and shifts of ~13 days delay and ~15 days ahead, respectively, relative to HLS-ABI detections; and (4) HLS-ABI greenup and senescence onsets align closely to PhenoCam observations with an absolute average difference of less than 2 days and 5 days, respectively, which are much better than phenology detections from ABI or HLS alone. The result suggests that the proposed approach could be implemented the monitor of 30 m LSP over regions with persistent cloud cover.


2020 ◽  
Vol 12 (21) ◽  
pp. 3478
Author(s):  
Ofer Beeri ◽  
Yishai Netzer ◽  
Sarel Munitz ◽  
Danielle Ferman Mintz ◽  
Ran Pelta ◽  
...  

Daily or weekly irrigation monitoring conducted per sub-field or management zone is an important factor in vine irrigation decision-making. The objective is to determine the crop coefficient (Kc) and the leaf area index (LAI). Since the 1990s, optic satellite imagery has been utilized for this purpose, yet cloud-cover, as well as the desire to increase the temporal resolution, raise the need to integrate more imagery sources. The Sentinel-1 (a C-band synthetic aperture radar—SAR) can solve both issues, but its accuracy for LAI and Kc mapping needs to be determined. The goals of this study were as follows: (1) to test different methods for integrating SAR and optic sensors for increasing temporal resolution and creating seamless time-series of LAI and Kc estimations; and (2) to evaluate the ability of Sentinel-1 to estimate LAI and Kc in comparison to Sentinel-2 and Landsat-8. LAI values were collected at two vineyards, over three (north plot) and four (south plot) growing seasons. These values were converted to Kc, and both parameters were tested against optic and SAR indices. The results present the two Sentinel-1 indices that achieved the best accuracy in estimating the crop parameters and the best method for fusing the optic and the SAR data. Utilizing these achievements, the accuracy of the Kc and LAI estimations from Sentinel-1 were slightly better than the Sentinel-2′s and the Landsat-8′s accuracy. The integration of all three sensors into one seamless time-series not only increases the temporal resolution but also improves the overall accuracy.


2019 ◽  
Vol 11 (11) ◽  
pp. 1266 ◽  
Author(s):  
Mingzheng Zhang ◽  
Dehai Zhu ◽  
Wei Su ◽  
Jianxi Huang ◽  
Xiaodong Zhang ◽  
...  

Continuous monitoring of crop growth status using time-series remote sensing image is essential for crop management and yield prediction. The growing season of summer corn in the North China Plain with the period of rain and hot, which makes the acquisition of cloud-free satellite imagery very difficult. Therefore, we focused on developing image datasets with both a high temporal resolution and medium spatial resolution by harmonizing the time-series of MOD09GA Normalized Difference Vegetation Index (NDVI) images and 30-m-resolution GF-1 WFV images using the improved Kalman filter model. The harmonized images, GF-1 images, and Landsat 8 images were then combined and used to monitor the summer corn growth from 5th June to 6th October, 2014, in three counties of Hebei Province, China, in conjunction with meteorological data and MODIS Evapotranspiration Data Set. The prediction residuals ( Δ P R K ) in NDVI between the GF-1 observations and the harmonized images was in the range of −0.2 to 0.2 with Gauss distribution. Moreover, the obtained phenological curves manifested distinctive growth features for summer corn at field scales. Changes in NDVI over time were more effectively evaluated and represented corn growth trends, when considered in conjunction with meteorological data and MODIS Evapotranspiration Data Set. We observed that the NDVI of summer corn showed a process of first decreasing and then rising in the early growing stage and discuss how the temperature and moisture of the environment changed with the growth stage. The study demonstrated that the synthesized dataset constructed using this methodology was highly accurate, with high temporal resolution and medium spatial resolution and it was possible to harmonize multi-source remote sensing imagery by the improved Kalman filter for long-term field monitoring.


2019 ◽  
Vol 11 (14) ◽  
pp. 1730 ◽  
Author(s):  
Alexandra Runge ◽  
Guido Grosse

The Arctic-Boreal regions experience strong changes of air temperature and precipitation regimes, which affect the thermal state of the permafrost. This results in widespread permafrost-thaw disturbances, some unfolding slowly and over long periods, others occurring rapidly and abruptly. Despite optical remote sensing offering a variety of techniques to assess and monitor landscape changes, a persistent cloud cover decreases the amount of usable images considerably. However, combining data from multiple platforms promises to increase the number of images drastically. We therefore assess the comparability of Landsat-8 and Sentinel-2 imagery and the possibility to use both Landsat and Sentinel-2 images together in time series analyses, achieving a temporally-dense data coverage in Arctic-Boreal regions. We determined overlapping same-day acquisitions of Landsat-8 and Sentinel-2 images for three representative study sites in Eastern Siberia. We then compared the Landsat-8 and Sentinel-2 pixel-pairs, downscaled to 60 m, of corresponding bands and derived the ordinary least squares regression for every band combination. The acquired coefficients were used for spectral bandpass adjustment between the two sensors. The spectral band comparisons showed an overall good fit between Landsat-8 and Sentinel-2 images already. The ordinary least squares regression analyses underline the generally good spectral fit with intercept values between 0.0031 and 0.056 and slope values between 0.531 and 0.877. A spectral comparison after spectral bandpass adjustment of Sentinel-2 values to Landsat-8 shows a nearly perfect alignment between the same-day images. The spectral band adjustment succeeds in adjusting Sentinel-2 spectral values to Landsat-8 very well in Eastern Siberian Arctic-Boreal landscapes. After spectral adjustment, Landsat and Sentinel-2 data can be used to create temporally-dense time series and be applied to assess permafrost landscape changes in Eastern Siberia. Remaining differences between the sensors can be attributed to several factors including heterogeneous terrain, poor cloud and cloud shadow masking, and mixed pixels.


2019 ◽  
Vol 171 ◽  
pp. 36-50 ◽  
Author(s):  
Laura Piedelobo ◽  
David Hernández-López ◽  
Rocío Ballesteros ◽  
Amal Chakhar ◽  
Susana Del Pozo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document