scholarly journals Comparing Spectral Characteristics of Landsat-8 and Sentinel-2 Same-Day Data for Arctic-Boreal Regions

2019 ◽  
Vol 11 (14) ◽  
pp. 1730 ◽  
Author(s):  
Alexandra Runge ◽  
Guido Grosse

The Arctic-Boreal regions experience strong changes of air temperature and precipitation regimes, which affect the thermal state of the permafrost. This results in widespread permafrost-thaw disturbances, some unfolding slowly and over long periods, others occurring rapidly and abruptly. Despite optical remote sensing offering a variety of techniques to assess and monitor landscape changes, a persistent cloud cover decreases the amount of usable images considerably. However, combining data from multiple platforms promises to increase the number of images drastically. We therefore assess the comparability of Landsat-8 and Sentinel-2 imagery and the possibility to use both Landsat and Sentinel-2 images together in time series analyses, achieving a temporally-dense data coverage in Arctic-Boreal regions. We determined overlapping same-day acquisitions of Landsat-8 and Sentinel-2 images for three representative study sites in Eastern Siberia. We then compared the Landsat-8 and Sentinel-2 pixel-pairs, downscaled to 60 m, of corresponding bands and derived the ordinary least squares regression for every band combination. The acquired coefficients were used for spectral bandpass adjustment between the two sensors. The spectral band comparisons showed an overall good fit between Landsat-8 and Sentinel-2 images already. The ordinary least squares regression analyses underline the generally good spectral fit with intercept values between 0.0031 and 0.056 and slope values between 0.531 and 0.877. A spectral comparison after spectral bandpass adjustment of Sentinel-2 values to Landsat-8 shows a nearly perfect alignment between the same-day images. The spectral band adjustment succeeds in adjusting Sentinel-2 spectral values to Landsat-8 very well in Eastern Siberian Arctic-Boreal landscapes. After spectral adjustment, Landsat and Sentinel-2 data can be used to create temporally-dense time series and be applied to assess permafrost landscape changes in Eastern Siberia. Remaining differences between the sensors can be attributed to several factors including heterogeneous terrain, poor cloud and cloud shadow masking, and mixed pixels.

Author(s):  
J. E. Escoto ◽  
A. C. Blanco ◽  
R. J. Argamosa ◽  
J. M. Medina

Abstract. This study entails generation of empirical ordinary least squares regression models to estimate water parameters. It uses remote sensing for environmental monitoring of Pasig River located in the Philippines. This uses measurements of primary water quality (WQ) parameters defined on Department of Environment and Natural Resources Administrative Order 2016-08 recorded on the Pasig River Unified Monitoring Stations (PRUMS) report from January to June of 2019. Sentinel-2 images are utilized to estimate biological oxygen demand (BOD), Chloride, Color, Dissolved Oxygen (DO), Fecal Coliform, Nitrate, pH, Phosphate, Temperature, and Total suspended solids (TSS). Feature generation involved calculation of different band reflectances from the satellite image. Exhaustive feature selection through application of a Pearson Correlation threshold was applied to limit number of independent variables. The box-cox transformations of water quality parameters (except for Temperature) were used as dependent variables and the selected features are used as dependent variables for the ordinary least squares regression model. The root mean square error (RMSE) values for the models which are computed using the k-fold cross validation technique showed outliers, especially for the TSS model (>547000 mg/L), which made its average negative RMSE so large. Tests for multicollinearity, autocorrelation, and homoscedasticity indicated problems in models created. However, normality of residuals indicates that models allow us to roughly estimate water quality for the river as a whole with the advantages of remote sensing, enabling a better perspective for its spatial distribution.


2020 ◽  
Vol 12 (11) ◽  
pp. 1876 ◽  
Author(s):  
Katsuto Shimizu ◽  
Tetsuji Ota ◽  
Nobuya Mizoue ◽  
Hideki Saito

Developing accurate methods for estimating forest structures is essential for efficient forest management. The high spatial and temporal resolution data acquired by CubeSat satellites have desirable characteristics for mapping large-scale forest structural attributes. However, most studies have used a median composite or single image for analyses. The multi-temporal use of CubeSat data may improve prediction accuracy. This study evaluates the capabilities of PlanetScope CubeSat data to estimate canopy height derived from airborne Light Detection and Ranging (LiDAR) by comparing estimates using Sentinel-2 and Landsat 8 data. Random forest (RF) models using a single composite, multi-seasonal composites, and time-series data were investigated at different spatial resolutions of 3, 10, 20, and 30 m. The highest prediction accuracy was obtained by the PlanetScope multi-seasonal composites at 3 m (relative root mean squared error: 51.3%) and Sentinel-2 multi-seasonal composites at the other spatial resolutions (40.5%, 35.2%, and 34.2% for 10, 20, and 30 m, respectively). The results show that RF models using multi-seasonal composites are 1.4% more accurate than those using harmonic metrics from time-series data in the median. PlanetScope is recommended for canopy height mapping at finer spatial resolutions. However, the unique characteristics of PlanetScope data in a spatial and temporal context should be further investigated for operational forest monitoring.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Janet Myhre ◽  
Daniel R. Jeske ◽  
Michael Rennie ◽  
Yingtao Bi

A heteroscedastic linear regression model is developed from plausible assumptions that describe the time evolution of performance metrics for equipment. The inherited motivation for the related weighted least squares analysis of the model is an essential and attractive selling point to engineers with interest in equipment surveillance methodologies. A simple test for the significance of the heteroscedasticity suggested by a data set is derived and a simulation study is used to evaluate the power of the test and compare it with several other applicable tests that were designed under different contexts. Tolerance intervals within the context of the model are derived, thus generalizing well-known tolerance intervals for ordinary least squares regression. Use of the model and its associated analyses is illustrated with an aerospace application where hundreds of electronic components are continuously monitored by an automated system that flags components that are suspected of unusual degradation patterns.


Author(s):  
M. Sibanda ◽  
O. Mutanga ◽  
T. Dube ◽  
J. Odindi ◽  
P. L. Mafongoya

Abstract. Considering the high maize yield loses that are caused by diseases incidences as well as incomprehensive monitoring initiatives in the crop farming sector of agriculture, there is a need to come up with spatially explicit, cheap, fast and consistent approaches for monitoring as well as forecasting food crop diseases, such as maize gray leaf spot. This study, therefore, we sought to investigate the usability, strength and practicality of the forthcoming HyspIRI in detecting disease progression of Maize Gray leafy spot infections in relation to the Sentinel-2 MSI, Landsat 8 OLI spectral configurations. Maize Gray leafy spot disease progression that were discriminated based on partial least squares –discriminant analysis (PLS-DA) algorithm were (i) healthy, (ii) intermediate and (ii) severely infected maize crops. Comparatively, the results show that the HyspIRI’s simulated spectral settings slightly performed better than those of Sentinel-2 MSI, VENμS and Landsat 8 OLI sensor. HyspIRI exhibited an overall accuracy of 0.98 compared to 0.95, 0.93 and 0.89 exhibited by Sentinel-2 MSI, VENμS and Landsat 8 OLI sensor sensors, respectively. Further, the results showed that the visible section the red-edge and NIR covered by all the four sensors were the most influential spectral regions for discriminating different Maize Gray leafy spot infections. These findings underscore the added value and potential scientific breakthroughs likely to be brought about by the upcoming hyperspectral HyspIRI sensor in precision agriculture and forecasting of crop disease epidemics to ensure food security.


2021 ◽  
Vol 13 (21) ◽  
pp. 4465
Author(s):  
Yu Shen ◽  
Xiaoyang Zhang ◽  
Weile Wang ◽  
Ramakrishna Nemani ◽  
Yongchang Ye ◽  
...  

Accurate and timely land surface phenology (LSP) provides essential information for investigating the responses of terrestrial ecosystems to climate changes and quantifying carbon and surface energy cycles on the Earth. LSP has been widely investigated using daily Visible Infrared Imaging Radiometer Suite (VIIRS) or Moderate Resolution Imaging Spectroradiometer (MODIS) observations, but the resultant phenometrics are frequently influenced by surface heterogeneity and persistent cloud contamination in the time series observations. Recently, LSP has been derived from Landsat-8 and Sentinel-2 time series providing detailed spatial pattern, but the results are of high uncertainties because of poor temporal resolution. With the availability of data from Advanced Baseline Imager (ABI) onboard a new generation of geostationary satellites that observe the earth every 10–15 min, daily cloud-free time series could be obtained with high opportunities. Therefore, this study investigates the generation of synthetic high spatiotemporal resolution time series by fusing the harmonized Landsat-8 and Sentinel-2 (HLS) time series with the temporal shape of ABI data for monitoring field-scale (30 m) LSP. The algorithm is verified by detecting the timings of greenup and senescence onsets around north Wisconsin/Michigan states, United States, where cloud cover is frequent during spring rainy season. The LSP detections from HLS-ABI are compared with those from HLS or ABI alone and are further evaluated using PhenoCam observations. The result indicates that (1) ABI could provide ~3 times more high-quality observations than HLS around spring greenup onset; (2) the greenup and senescence onsets derived from ABI and HLS-ABI are spatially consistent and statistically comparable with a median difference less than 1 and 10-days, respectively; (3) greenup and senescence onsets derived from HLS data show sharp boundaries around the orbit-overlapped areas and shifts of ~13 days delay and ~15 days ahead, respectively, relative to HLS-ABI detections; and (4) HLS-ABI greenup and senescence onsets align closely to PhenoCam observations with an absolute average difference of less than 2 days and 5 days, respectively, which are much better than phenology detections from ABI or HLS alone. The result suggests that the proposed approach could be implemented the monitor of 30 m LSP over regions with persistent cloud cover.


Sign in / Sign up

Export Citation Format

Share Document