scholarly journals The NASA MODIS-VIIRS Continuity Cloud Optical Properties Products

2020 ◽  
Vol 13 (1) ◽  
pp. 2 ◽  
Author(s):  
Steven Platnick ◽  
Kerry Meyer ◽  
Galina Wind ◽  
Robert E. Holz ◽  
Nandana Amarasinghe ◽  
...  

The NASA Aqua MODIS and Suomi National Polar-Orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) climate data record continuity cloud properties products (CLDPROP) were publicly released in April 2019 with an update later that year (Version 1.1). These cloud products, having heritage with the NASA Moderate-resolution Imaging Spectroradiometer (MODIS) MOD06 cloud optical properties product and the NOAA GOES-R Algorithm Working Group (AWG) Cloud Height Algorithm (ACHA), represent an effort to bridge the multispectral imager records of NASA’s Earth Observing System (EOS) and NOAA’s current generation of operational weather satellites to achieve a continuous, multi-decadal climate data record for clouds that can extend well into the 2030s. CLDPROP offers a “continuity of approach,” applying common algorithms and ancillary datasets to both MODIS and VIIRS, including utilizing only a subset of spectral channels available on both sensors to help mitigate instrument differences. The initial release of the CLDPROP_MODIS and CLDPROP_VIIRS data records spans the SNPP observational record (2012-present). Here, we present an overview of the algorithms and an evaluation of the intersensor continuity of the core CLDPROP_MODIS and CLDPROP_VIIRS cloud optical property datasets, i.e., cloud thermodynamic phase, optical thickness, effective particle size, and derived water path. The evaluation includes analyses of pixel-level MODIS/VIIRS co-locations as well as spatial and temporal aggregated statistics, with a focus on identifying and understanding the root causes of individual dataset discontinuities. The results of this evaluation will inform future updates to the CLDPROP products and help scientific users determine the appropriate use of the product datasets for their specific needs.

2015 ◽  
Vol 8 (10) ◽  
pp. 4083-4110 ◽  
Author(s):  
R. C. Levy ◽  
L. A. Munchak ◽  
S. Mattoo ◽  
F. Patadia ◽  
L. A. Remer ◽  
...  

Abstract. To answer fundamental questions about aerosols in our changing climate, we must quantify both the current state of aerosols and how they are changing. Although NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, this period is still too short to create an aerosol climate data record (CDR). The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on the Suomi-NPP satellite in late 2011, with additional copies planned for future satellites. Can the MODIS aerosol data record be continued with VIIRS to create a consistent CDR? When compared to ground-based AERONET data, the VIIRS Environmental Data Record (V_EDR) has similar validation statistics as the MODIS Collection 6 (M_C6) product. However, the V_EDR and M_C6 are offset in regards to global AOD magnitudes, and tend to provide different maps of 0.55 μm AOD and 0.55/0.86 μm-based Ångström Exponent (AE). One reason is that the retrieval algorithms are different. Using the Intermediate File Format (IFF) for both MODIS and VIIRS data, we have tested whether we can apply a single MODIS-like (ML) dark-target algorithm on both sensors that leads to product convergence. Except for catering the radiative transfer and aerosol lookup tables to each sensor's specific wavelength bands, the ML algorithm is the same for both. We run the ML algorithm on both sensors between March 2012 and May 2014, and compare monthly mean AOD time series with each other and with M_C6 and V_EDR products. Focusing on the March–April–May (MAM) 2013 period, we compared additional statistics that include global and gridded 1° × 1° AOD and AE, histograms, sampling frequencies, and collocations with ground-based AERONET. Over land, use of the ML algorithm clearly reduces the differences between the MODIS and VIIRS-based AOD. However, although global offsets are near zero, some regional biases remain, especially in cloud fields and over brighter surface targets. Over ocean, use of the ML algorithm actually increases the offset between VIIRS and MODIS-based AOD (to ~ 0.025), while reducing the differences between AE. We characterize algorithm retrievability through statistics of retrieval fraction. In spite of differences between retrieved AOD magnitudes, the ML algorithm will lead to similar decisions about "whether to retrieve" on each sensor. Finally, we discuss how issues of calibration, as well as instrument spatial resolution may be contributing to the statistics and the ability to create a consistent MODIS → VIIRS aerosol CDR.


2015 ◽  
Vol 8 (7) ◽  
pp. 6877-6947 ◽  
Author(s):  
R. C. Levy ◽  
L. A. Munchak ◽  
S. Mattoo ◽  
F. Patadia ◽  
L. A. Remer ◽  
...  

Abstract. To answer fundamental questions about aerosols in our changing climate, we must quantify both the current state of aerosols and how they are changing. Although NASA's Moderate resolution Imaging Spectroradiometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, this period is still too short to create an aerosol climate data record (CDR). The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on the Suomi-NPP satellite in late 2011, with additional copies planned for future satellites. Can the MODIS aerosol data record be continued with VIIRS to create a consistent CDR? When compared to ground-based AERONET data, the VIIRS Environmental Data Record (V_EDR) has similar validation statistics as the MODIS Collection 6 (M_C6) product. However, the V_EDR and M_C6 are offset in regards to global AOD magnitudes, and tend to provide different maps of 0.55 μm AOD and 0.55/0.86 μm-based Ångstrom Exponent (AE). One reason is that the retrieval algorithms are different. Using the Intermediate File Format (IFF) for both MODIS and VIIRS data, we have tested whether we can apply a single MODIS-like (ML) dark-target algorithm on both sensors that leads to product convergence. Except for catering the radiative transfer and aerosol lookup tables to each sensor's specific wavelength bands, the ML algorithm is the same for both. We run the ML algorithm on both sensors between March 2012 and May 2014, and compare monthly mean AOD time series with each other and with M_C6 and V_EDR products. Focusing on the March–April–May (MAM) 2013 period, we compared additional statistics that include global and gridded 1° × 1° AOD and AE, histograms, sampling frequencies, and collocations with ground-based AERONET. Over land, use of the ML algorithm clearly reduces the differences between the MODIS and VIIRS-based AOD. However, although global offsets are near zero, some regional biases remain, especially in cloud fields and over brighter surface targets. Over ocean, use of the ML algorithm actually increases the offset between VIIRS and MODIS-based AOD (to ∼ 0.025), while reducing the differences between AE. We characterize algorithm retrievibility through statistics of retrieval fraction. In spite of differences between retrieved AOD magnitudes, the ML algorithm will lead to similar decisions about "whether to retrieve" on each sensor. Finally, we discuss how issues of calibration, as well as instrument spatial resolution may be contributing to the statistics and the ability to create a consistent MODIS → VIIRS aerosol CDR.


Climate ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 57 ◽  
Author(s):  
Shubhechchha Thapa ◽  
Parveen K. Chhetri ◽  
Andrew G. Klein

The VIIRS (Visible Infrared Imaging Radiometer Suite) instrument on board the Suomi-NPP (National Polar-Orbiting Partnership) satellite aims to provide long-term continuity of several environmental data series including snow cover initiated with MODIS (Moderate Resolution Imaging Spectroradiometer). Although it is speculated that MODIS and VIIRS snow cover products may differ because of their differing spatial resolutions and spectral coverage, quantitative comparisons between their snow products are currently limited. Therefore, this study intercompares MODIS and VIIRS snow products for the 2016 Hydrological Year over the Midwestern United States and southern Canada. Two hundred and forty-four swath snow products from MODIS/Aqua (MYD10L2) and the VIIRS EDR (Environmental Data Records) (VSCMO/binary) were intercompared using confusion matrices, comparison maps and false color imagery. Thresholding the MODIS NDSI (Normalized Difference Snow Index) Snow Cover product at a snow cover fraction of 30% generated binary snow maps are most comparable to the NOAA VIIRS binary snow product. Overall agreement between MODIS and VIIRS was found to be approximately 98%. This exceeds the VIIRS accuracy requirements of 90% probability of correct typing. The agreement was highest during the winter but lower during late fall and spring. MODIS and VIIRS often mapped snow/no-snow transition zones as a cloud. The assessment of total snow and cloud pixels and comparison snow maps of MODIS and VIIRS indicate that VIIRS is mapping more snow cover and less cloud cover compared to MODIS. This is evidenced by the average area of snow in MYD10L2 and VSCMO being 5.72% and 11.43%, no-snow 26.65% and 28.67% and cloud 65.02% and 59.91%, respectively. While VIIRS and MODIS have a similar capacity to map snow cover, VIIRS has the potential to map snow cover area more accurately, for the successful development of climate data records.


2018 ◽  
Author(s):  
Salomon Eliasson ◽  
Karl Göran Karlsson ◽  
Erik van Meijgaard ◽  
Jan Fokke Meirink ◽  
Martin Stengel ◽  
...  

Abstract. The Cloud_cci satellite simulator has been developed to enable comparisons between the Cloud_cci Climate Data Record (CDR) and climate models. The Cloud_cci simulator is applied here to the EC-Earth Global Climate Model as well as the RACMO Regional Climate Model. We demonstrate the importance of using a satellite simulator that emulates the retrieval process underlying the CDR as opposed to taking the model output directly. The impact of not sampling the model at the local overpass time of the polar-orbiting satellites used to make the dataset was shown to be large, yielding up to 100 % error in Liquid Water Path (LWP) simulations in certain regions. The simulator removes all clouds with optical thickness smaller than 0.2 to emulate the Cloud_cci CDR's lack of sensitivity to very thin clouds. This reduces Total Cloud Fraction (TCF) globally by about 10 % for EC-Earth and by a few percent for RACMO over Europe. Globally, compared to the Cloud_cci CDR, EC-Earth is shown to be mostly in agreement on the distribution of clouds and their height, but it generally underestimates the high cloud fraction associated with tropical convection regions, and overestimates the occurrence and height of clouds over the Sahara and the Arabian sub-continent. In RACMO, TCF is higher than retrieved over the northern Atlantic Ocean, but lower than retrieved over the European continent, where in addition the Cloud Top Pressure (CTP) is underestimated. The results shown here demonstrate again that a simulator is needed to make meaningful comparisons between modelled and retrieved cloud properties. It is promising to see that for (nearly) all cloud properties the simulator improves the agreement of the model with the satellite data.


2020 ◽  
Vol 12 (24) ◽  
pp. 4096 ◽  
Author(s):  
Kerry Meyer ◽  
Steven Platnick ◽  
Robert Holz ◽  
Steve Dutcher ◽  
Greg Quinn ◽  
...  

Climate studies, including trend detection and other time series analyses, necessarily require stable, well-characterized and long-term data records. For satellite-based geophysical retrieval datasets, such data records often involve merging the observational records of multiple similar, though not identical, instruments. The National Aeronautics and Space Administration (NASA) cloud mask (CLDMSK) and cloud-top and optical properties (CLDPROP) products are designed to bridge the observational records of the Moderate-resolution Imaging Spectroradiometer (MODIS) onboard NASA’s Aqua satellite and the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the joint NASA/National Oceanic and Atmospheric Administration (NOAA) Suomi National Polar-orbiting Partnership (SNPP) satellite and NOAA’s new generation of operational polar-orbiting weather platforms (NOAA-20+). Early implementations of the CLDPROP algorithms on Aqua MODIS and SNPP VIIRS suffered from large intersensor biases in cloud optical properties that were traced back to relative radiometric inconsistency in analogous shortwave channels on both imagers, with VIIRS generally observing brighter top-of-atmosphere spectral reflectance than MODIS (e.g., up to 5% brighter in the 0.67 µm channel). Radiometric adjustment factors for the SNPP and NOAA-20 VIIRS shortwave channels used in the cloud optical property retrievals are derived from an extensive analysis of the overlapping observational records with Aqua MODIS, specifically for homogenous maritime liquid water cloud scenes for which the viewing/solar geometry of MODIS and VIIRS match. Application of these adjustment factors to the VIIRS L1B prior to ingestion into the CLDMSK and CLDPROP algorithms yields improved intersensor agreement, particularly for cloud optical properties.


2020 ◽  
Author(s):  
Irina Solodovnik ◽  
Diana Stein ◽  
Jan Fokke Meirink ◽  
Karl-Göran Karlsson ◽  
Martin Stengel

<p>Global data records of cloud properties are an important part for the analysis of the Earth's climate system and its variability. One of the few sources facilitating such records are the measurements of the satellite-based Advanced Very High Resolution Radiometer (AVHRR) sensor that provides spatially homogeneous and high resolved information in multiple spectral bands. This information can be used to retrieve global cloud properties covering multiple decades, as, for example, composed as part of the CM SAF Cloud, Albedo, Radiation data record based on AVHRR (CLARA) series.</p><p>In this presentation we introduce the edition 2.1 (CLARA-A2.1) of this record series, which is the temporally extended version of CLARA-A2. This extension includes three and a half more years at the end of the data record, which now covers the time period January 1982 to June 2019 (37.5 years). CLARA-A2.1 includes a comprehensive set of cloud parameters: fractional cloud cover, cloud top products, cloud thermodynamic phase and cloud physical properties, such as cloud optical thickness, particle effective radius and cloud water path. Cloud products are available as daily and monthly averages and histograms (Level 3) on a regular 0.25°×0.25° global grid and as daily, global composite products (Level 2b) with a spatial resolution of 0.05°×0.05°. Time series analyses of the CLARA-A2.1 cloud products show the homogeneity and stability of the extension.</p><p>In addition to the general characteristics of the CLARA-A2.1 record, we will summarize the results of the thorough evaluation efforts that were conducted by validation against reference observations (e.g. SYNOP, DARDAR, CALIOP) and by comparisons to similar well established data records (e.g. Patmos-X, ISCCP-H and MODIS C6.1). CLARA-A2.1 cloud products show generally a very good agreement with all the compared data sets and fulfil CM SAF's accuracy, precision and decadal stability requirements. As an additional aspect, we will touch upon the CLARA Interim Climate Data Record (ICDR) concept that will soon be used for extending CLARA-A2.1 in near-real-time mode.</p>


2019 ◽  
Vol 12 (2) ◽  
pp. 829-847 ◽  
Author(s):  
Salomon Eliasson ◽  
Karl Göran Karlsson ◽  
Erik van Meijgaard ◽  
Jan Fokke Meirink ◽  
Martin Stengel ◽  
...  

Abstract. The Cloud Climate Change Initiative (Cloud_cci) satellite simulator has been developed to enable comparisons between the Cloud_cci climate data record (CDR) and climate models. The Cloud_cci simulator is applied here to the EC-Earth global climate model as well as the Regional Atmospheric Climate Model (RACMO) regional climate model. We demonstrate the importance of using a satellite simulator that emulates the retrieval process underlying the CDR as opposed to taking the model output directly. The impact of not sampling the model at the local overpass time of the polar-orbiting satellites used to make the dataset was shown to be large, yielding up to 100 % error in liquid water path (LWP) simulations in certain regions. The simulator removes all clouds with optical thickness smaller than 0.2 to emulate the Cloud_cci CDR's lack of sensitivity to very thin clouds. This reduces total cloud fraction (TCF) globally by about 10 % for EC-Earth and by a few percent for RACMO over Europe. Globally, compared to the Cloud_cci CDR, EC-Earth is shown to be mostly in agreement on the distribution of clouds and their height, but it generally underestimates the high cloud fraction associated with tropical convection regions, and overestimates the occurrence and height of clouds over the Sahara and the Arabian subcontinent. In RACMO, TCF is higher than retrieved over the northern Atlantic Ocean but lower than retrieved over the European continent, where in addition the cloud top pressure (CTP) is underestimated. The results shown here demonstrate again that a simulator is needed to make meaningful comparisons between modeled and retrieved cloud properties. It is promising to see that for (nearly) all cloud properties the simulator improves the agreement of the model with the satellite data.


2020 ◽  
Vol 12 (18) ◽  
pp. 2900 ◽  
Author(s):  
Lorraine A. Remer ◽  
Robert C. Levy ◽  
Shana Mattoo ◽  
Didier Tanré ◽  
Pawan Gupta ◽  
...  

The Dark Target aerosol algorithm was developed to exploit the information content available from the observations of Moderate-Resolution Imaging Spectroradiometers (MODIS), to better characterize the global aerosol system. The algorithm is based on measurements of the light scattered by aerosols toward a space-borne sensor against the backdrop of relatively dark Earth scenes, thus giving rise to the name “Dark Target”. Development required nearly a decade of research that included application of MODIS airborne simulators to provide test beds for proto-algorithms and analysis of existing data to form realistic assumptions to constrain surface reflectance and aerosol optical properties. This research in itself played a significant role in expanding our understanding of aerosol properties, even before Terra MODIS launch. Contributing to that understanding were the observations and retrievals of the growing Aerosol Robotic Network (AERONET) of sun-sky radiometers, which has walked hand-in-hand with MODIS and the development of other aerosol algorithms, providing validation of the satellite-retrieved products after launch. The MODIS Dark Target products prompted advances in Earth science and applications across subdisciplines such as climate, transport of aerosols, air quality, and data assimilation systems. Then, as the Terra and Aqua MODIS sensors aged, the challenge was to monitor the effects of calibration drifts on the aerosol products and to differentiate physical trends in the aerosol system from artefacts introduced by instrument characterization. Our intention is to continue to adapt and apply the well-vetted Dark Target algorithms to new instruments, including both polar-orbiting and geosynchronous sensors. The goal is to produce an uninterrupted time series of an aerosol climate data record that begins at the dawn of the 21st century and continues indefinitely into the future.


2020 ◽  
Vol 12 (12) ◽  
pp. 2040
Author(s):  
Wenying Su ◽  
Lusheng Liang ◽  
Hailan Wang ◽  
Zachary A. Eitzen

The Clouds and the Earth’s Radiant Energy System (CERES) project provides observations of Earth’s radiation budget using measurements from CERES instruments on board the Terra, Aqua, Suomi National Polar-orbiting Partnership (S-NPP), and NOAA-20 satellites. The CERES top-of-atmosphere (TOA) fluxes are produced by converting radiance measurements using empirical angular distribution models, which are functions of cloud properties that are retrieved from imagers flying with the CERES instruments. As the objective is to create a long-term climate data record, not only calibration consistency of the six CERES instruments needs to be maintained for the entire time period, it is also important to maintain the consistency of other input data sets used to produce this climate data record. In this paper, we address aspects that could potentially affect the CERES TOA flux data quality. Discontinuities in imager calibration can affect cloud retrieval which can lead to erroneous flux trends. When imposing an artificial 0.6 per decade decreasing trend to cloud optical depth, which is similar to the trend difference between CERES Edition 2 and Edition 4 cloud retrievals, the decadal SW flux trend changed from − 0.3 5 ± 0.18 Wm − 2 to 0.61 ± 0.18 Wm − 2 . This indicates that a 13% change in cloud optical depth results in about 1% change in the SW flux. Furthermore, different CERES instruments provide valid fluxes at different viewing zenith angle ranges, and including fluxes derived at the most oblique angels unique to S-NPP (>66 ∘ ) can lead to differences of 0.8 Wm − 2 and 0.3 Wm − 2 in global monthly mean instantaneous SW flux and LW flux. To ensure continuity, the viewing zenith angle ranges common to all CERES instruments (<66 ∘ ) are used to produce the long-term Earth’s radiation budget climate data record. The consistency of cloud properties retrieved from different imagers also needs to be maintained to ensure the TOA flux consistency.


2018 ◽  
Vol 10 (1) ◽  
pp. 583-593 ◽  
Author(s):  
Alisa H. Young ◽  
Kenneth R. Knapp ◽  
Anand Inamdar ◽  
William Hankins ◽  
William B. Rossow

Abstract. This paper describes the new global long-term International Satellite Cloud Climatology Project (ISCCP) H-series climate data record (CDR). The H-series data contain a suite of level 2 and 3 products for monitoring the distribution and variation of cloud and surface properties to better understand the effects of clouds on climate, the radiation budget, and the global hydrologic cycle. This product is currently available for public use and is derived from both geostationary and polar-orbiting satellite imaging radiometers with common visible and infrared (IR) channels. The H-series data currently span July 1983 to December 2009 with plans for continued production to extend the record to the present with regular updates. The H-series data are the longest combined geostationary and polar orbiter satellite-based CDR of cloud properties. Access to the data is provided in network common data form (netCDF) and archived by NOAA's National Centers for Environmental Information (NCEI) under the satellite Climate Data Record Program (https://doi.org/10.7289/V5QZ281S). The basic characteristics, history, and evolution of the dataset are presented herein with particular emphasis on and discussion of product changes between the H-series and the widely used predecessor D-series product which also spans from July 1983 through December 2009. Key refinements included in the ISCCP H-series CDR are based on improved quality control measures, modified ancillary inputs, higher spatial resolution input and output products, calibration refinements, and updated documentation and metadata to bring the H-series product into compliance with existing standards for climate data records.


Sign in / Sign up

Export Citation Format

Share Document