scholarly journals Coastal Sand Dunes Monitoring by Low Vegetation Cover Classification and Digital Elevation Model Improvement Using Synchronized Hyperspectral and Full-Waveform LiDAR Remote Sensing

2020 ◽  
Vol 13 (1) ◽  
pp. 29
Author(s):  
Giovanni Frati ◽  
Patrick Launeau ◽  
Marc Robin ◽  
Manuel Giraud ◽  
Martin Juigner ◽  
...  

Due to the coastal morphodynamic being impacted by climate change there is a need for systematic and large-scale monitoring. The monitoring of sandy dunes in Pays-de-la-Loire (France) requires a simultaneous mapping of (i) its morphology, allowing to assess the sedimentary stocks and (ii) its low vegetation cover, which constitutes a significant proxy of the dune dynamics. The synchronization of hyperspectral imaging (HSI) with full-waveform (FWF) LiDAR is possible with an airborne platform. For a more intimate combination, we aligned the 1064 nm laser beam of a bi-spectral Titan FWF LiDAR with 401 bands and the 15 cm range resolution on the Hyspex VNIR camera with 160 bands and a 4.2 nm spectral resolution, making both types of data follow the same emergence angle. A ray tracing procedure permits to associate the data while keeping the acquisition angles. Stacking multiple shifted FWFs, which are linked to the same pixel, enables reaching a 5 cm range resolution grid. The objectives are (i) to improve the accuracy of the digital terrain models (DTM) obtained from an FWF analysis by calibrating it on dGPS field measurements and correcting it from local deviations induced by vegetation and (ii) in combination with airborne reflectances obtained with PARGE and ATCOR-4 corrections, to implement a supervised hierarchic classification of the main foredune vegetation proxies independently of the acquisition year and the physiological state. The normalization of the FWF LiDAR range to a dry sand reference waveform and the centering on their top canopy echoes allows to isolate Ammophilia arenaria from other vegetation types using two FWF indices, without confusion with slope effects. Fourteen HSI reflectance indices and 19 HSI Spectral Angle Mapping (SAM) indices based on 2017 spectral field measurements performed with the same Hyspex VNIR camera were stacked with both FWF indices into a single co-image for each acquisition year. A simple straightforward hierarchical classification of all 35 pre-classified co-image bands was successfully applied along 20 km, out of the 250 km of coastline acquired from 2017 to 2019, prefiguring its systematic application to the whole 250 km every year.

2009 ◽  
Vol 6 (1) ◽  
pp. 151-205 ◽  
Author(s):  
F. Bretar ◽  
A. Chauve ◽  
J.-S. Bailly ◽  
C. Mallet ◽  
A. Jacome

Abstract. This article presents the use of new remote sensing data acquired from airborne full-waveform lidar systems. They are active sensors which record altimeter profiles. This paper introduces a set of methodologies for processing these data. These techniques are then applied to a particular landscape, the badlands, but the methodologies are designed to be applied to any other landscape. Indeed, the knowledge of an accurate topography and a landcover classification is a prior knowledge for any hydrological and erosion model. Badlands tend to be the most significant areas of erosion in the world with the highest erosion rate values. Monitoring and predicting erosion within badland mountainous catchments is highly strategic due to the arising downstream consequences and the need for natural hazard mitigation engineering. Additionaly, beyond the altimeter information, full-waveform lidar data are processed to extract intensity and width of echoes. They are related to the target reflectance and geometry. Wa will investigate the relevancy of using lidar-derived Digital Terrain Models (DTMs) and to investigate the potentiality of the intensity and width information for 3-D landcover classification. Considering the novelty and the complexity of such data, they are presented in details as well as guidelines to process them. DTMs are then validated with field measurements. The morphological validation of DTMs is then performed via the computation of hydrological indexes and photo-interpretation. Finally, a 3-D landcover classification is performed using a Support Vector Machine classifier. The introduction of an ortho-rectified optical image in the classification process as well as full-waveform lidar data for hydrological purposes is then discussed.


2015 ◽  
Vol 19 (4) ◽  
pp. 1234-1245 ◽  
Author(s):  
Kuizhi Mei ◽  
Jinye Peng ◽  
Ling Gao ◽  
Naiquan Zheng ◽  
Jianping Fan

2014 ◽  
Vol 11 (9) ◽  
pp. 1614-1618 ◽  
Author(s):  
Alena Schmidt ◽  
Joachim Niemeyer ◽  
Franz Rottensteiner ◽  
Uwe Soergel

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245784
Author(s):  
Jérôme Théau ◽  
Étienne Lauzier-Hudon ◽  
Lydiane Aubé ◽  
Nicolas Devillers

Grasslands are among the most widespread ecosystems on Earth and among the most degraded. Their characterization and monitoring are generally based on field measurements, which are incomplete spatially and temporally. The recent advent of unmanned aerial vehicles (UAV) provides data at unprecedented spatial and temporal resolutions. This study aims to test and compare three approaches based on multispectral imagery acquired by UAV to estimate forage biomass or vegetation cover in grasslands. The study site is composed of 30 pasture plots (25 × 50 m), 5 bare soil plots (25 x 50), and 6 control plots (5 × 5 m) on a 14-ha field maintained at various biomass levels by grazing rotations and clipping over a complete growing season. A total of 14 flights were performed. A first approach based on structure from motion was used to generate a volumetric-based biomass estimation model (R2 of 0.93 and 0.94 for fresh biomass [FM] and dry biomass [DM], respectively). This approach is not very sensitive to low vegetation levels but is accurate for FM estimation greater than 0.5 kg/m2 (0.1 kg DM/m2). The Green Normalized Difference Vegetation Index (GNDVI) was selected to develop two additional approaches. One is based on a regression biomass prediction model (R2 of 0.80 and 0.66 for FM and DM, respectively) and leads to an accurate estimation at levels of FM lower than 3 kg/m2 (0.6 kg DM/m2). The other approach is based on a classification of vegetation cover from clustering of GNDVI values in four classes. This approach is more qualitative than the other ones but more robust and generalizable. These three approaches are relatively simple to use and applicable in an operational context. They are also complementary and can be adapted to specific applications in grassland characterization.


Author(s):  
M. Babadi ◽  
M. Sattari ◽  
S. Iran Pour

Abstract. Precise measurements of forest trees is very important in environmental protection. Measuring trees parameters by use of ground- based inventories is time and cost consuming. Employing advanced remote sensing techniques to obtain forest parameters has recently made a great progress step in this research area. Among the information resources of the study field, full waveform LiDAR data have attracted the attention of researchers in the recent years. However, decomposing LiDAR waveforms is one of the challenges in the data processing. In fact, the procedure of waveform decomposition causes some of the useful information in waveforms to be lost. In this study, we aim to investigate the potential use of non-decomposed full waveform LiDAR features and its fusion with optical images in classification of a sparsely forested area. We consider three classes including i) ground, ii) Quercus wislizeni and iii) Quercus douglusii for the classification procedure. In order to compare the results, five different strategies, namely i) RGB image, ii) common LiDAR features, iii) fusion of RGB image and common LiDAR features, iv) LiDAR waveform structural features and v) fusion of RGB image and LiDAR waveform structural features have been utilized for classifying the study area. The results of our study show that classification via using fusion of LiDAR waveform features and RGB image leads to the highest classification accuracy.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4583 ◽  
Author(s):  
Xiaoqiang Liu ◽  
Yanming Chen ◽  
Shuyi Li ◽  
Liang Cheng ◽  
Manchun Li

Airborne laser scanning (ALS) can acquire both geometry and intensity information of geo-objects, which is important in mapping a large-scale three-dimensional (3D) urban environment. However, the intensity information recorded by ALS will be changed due to the flight height and atmospheric attenuation, which decreases the robustness of the trained supervised classifier. This paper proposes a hierarchical classification method by separately using geometry and intensity information of urban ALS data. The method uses supervised learning for stable geometry information and unsupervised learning for fluctuating intensity information. The experiment results show that the proposed method can utilize the intensity information effectively, based on three aspects, as below. (1) The proposed method improves the accuracy of classification result by using intensity. (2) When the ALS data to be classified are acquired under the same conditions as the training data, the performance of the proposed method is as good as the supervised learning method. (3) When the ALS data to be classified are acquired under different conditions from the training data, the performance of the proposed method is better than the supervised learning method. Therefore, the classification model derived from the proposed method can be transferred to other ALS data whose intensity is inconsistent with the training data. Furthermore, the proposed method can contribute to the hierarchical use of some other ALS information, such as multi-spectral information.


Sign in / Sign up

Export Citation Format

Share Document