scholarly journals The Spatial-Temporal Distribution of GOCI-Derived Suspended Sediment in Taiwan Coastal Water Induced by Typhoon Soudelor

2021 ◽  
Vol 13 (2) ◽  
pp. 194
Author(s):  
Pham Minh Chau ◽  
Chi-Kuei Wang ◽  
An-Te Huang

This paper discusses the use of a Geostationary Ocean Color Imager (GOCI) to monitor the spatial–temporal distribution of suspended sediment (SS) along the coastal waters of northern Taiwan which was affected by Typhoon Soudelor from 8 to 10 August 2015. High temporal resolution satellite images derived from GOCI were processed to generate four-day average images of SS for pre- and post-typhoon periods. By using these four-day average images, characteristics of SS along the north of Taiwan coastal water can be tracked. The results show that SS concentration increased in the four-day average image immediately after the typhoon (11–14 August), and then decreased in the four-day average image 9 to 12 days after the typhoon (19–22 August). The mouths of the Dajia River and Tamsui River were hotspots of SS, ranging from 9 to 15 g/m3 during the two post-typhoon periods. Moreover, the maximum suspended sediment (SSmax) and its corresponding time (tmax) can be computed using GOCI hourly images for the post-typhoon period from 08:30 on 11 August to 08:30 on 22 August. The results show that SSmax occurred in the west coastal water within 4 days post-typhoon, and SSmax occurred in the east coastal water 9 to 12 days post-typhoon. Furthermore, an exponential decay model was used to compute the time when 90% of typhoon-induced SS was dissipated after Typhoon Soudelor (t90). It was found that t90 in the mouths of the Tamsui River and Heping River was the longest among all coastal waters of our study area, with a range of 360–480 h. River discharge and ocean currents with suspended sediment concentration are discussed.

2017 ◽  
Vol 49 (1) ◽  
pp. 73 ◽  
Author(s):  
Teguh Hariyanto ◽  
Trismono C. Krisna ◽  
Khomsin Khomsin ◽  
Cherie Bhekti Pribadi ◽  
Nadjadji Anwar

The decrease of coastal-water quality in the Surabaya coastal region can be recognized from the conceentration of Total Suspended Sediment(TSS ) . As a result we need a system for monitoring sediment concentration in the coastal region of Surabaya which regularly measures TSS. The principle to model and monitor TSSconcentration using remote sensing methods is by the integration of Landsat-8OLI satellites image processing using some ofTSS-models then those are analyzed for looking its suitability with TSS value direcly measured in the field ( in-situ measurement). The TSS value modeled from all algorithms validated usingcorrelation analysis and linear regression . The result shows that TSS model with the highest correlation value is TSS algorithm by Budiman (2004)with r value 0.991. Hence this algorithm can be used to investigate TSS-distribution which represent the coastal water quality of Surabaya with TSS value between 75 mg/L to 125 mg/L.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2189
Author(s):  
Zekun Song ◽  
Weiyong Shi ◽  
Junbiao Zhang ◽  
Hao Hu ◽  
Feng Zhang ◽  
...  

Based on the 2013 field survey data of hydrology, suspended sediments and bottom sediments in the Central Hangzhou Bay, this paper explores the dynamic mechanism of suspended sediments in Hangzhou Bay by employing material flux decomposition. Meanwhile, the migration trends of bed sediments are also investigated by analyzing grain size trends. The results show that during an ebb or flood tide, the hydrograph of suspended sediment concentration of Hangzhou Bay is dominated by an M shape (bimodal), which is attributed primarily to the generation of a soft mud layer and a separate fluid mud layer. Laterally, the distribution of suspended sediment concentration is high in the south and low in the north. From a macroscopic perspective, the net sediment transport in the study area displays a “north-landward and south-seaward” trend, presenting a “C”-shaped transport mode. That is, the sediments are transported from the bay mouth to the bay head on the north side and from the bay head to the bay mouth on the south side. The sediment transports by advection and tidal pumping are predominant, while the sediment transport by vertical circulation makes little contribution to the total sediment transport. Moreover, the sediment transport in the center of the reach area is dominated by advection, whereas that near both sides of the banks is controlled by tidal pumping. The asymmetry of the tides, i.e., flood-dominance in the north and ebb-dominance in the south, is the primary cause of the dynamic mechanism for the overall “C”-shaped transport mode in Hangzhou Bay. Additionally, coupled with the narrow-head wide-mouth geomorphology, Hangzhou Bay remains evolving by south shore silting and north shore scouring.


2020 ◽  
Vol 12 (11) ◽  
pp. 1766
Author(s):  
Lina Cai ◽  
Minrui Zhou ◽  
Jianqiang Liu ◽  
Danling Tang ◽  
Juncheng Zuo

We analyzed the impacts of islands on suspended sediment concentration (SSC) in Zhoushan Coastal waters based on data from HY-1C, which was launched in September 2018 in China, carrying Coastal Zone Imager (CZI) and Chinese Ocean Color and Temperature Scanner (COCTS) on it for offshore observation. A new SSC retrieved model was established based on the relationship between in situ SSC and the reflectance in red and near infrared bands of CZI image. Fifteen CZI images obtained from October to December 2019 were applied to retrieve SSC in Zhoushan coastal waters. The results show that SSC in study area is 100–1600 mg·L−1. The SSC near islands changes obviously. Upstream of the islands, SSC is lower than downstream. During the flood and ebb, when the current passes through the islands, circumfluence will appear, under certain geophysical factors, generating Karman vortex streets downstream of the islands. The sediments were stirred by the fast speed current at the outer side of vortex street to the sea surface inducing higher SSC at the outer side of the vortex street, while the central sediments of the vortex street were lower. In the direction of ocean currents, the SSC of the vortex street downstream of islands is changing regularly, i.e., increasing, then decreasing and increasing again and then decreasing in a snaking vortex street whose length downstream is between 1000 and 8000 m long.


Sign in / Sign up

Export Citation Format

Share Document