scholarly journals Geo-Object-Based Vegetation Mapping via Machine Learning Methods with an Intelligent Sample Collection Scheme: A Case Study of Taibai Mountain, China

2021 ◽  
Vol 13 (2) ◽  
pp. 249
Author(s):  
Tianjun Wu ◽  
Jiancheng Luo ◽  
Lijing Gao ◽  
Yingwei Sun ◽  
Wen Dong ◽  
...  

Precise vegetation maps of mountainous areas are of great significance to grasp the situation of an ecological environment and forest resources. In this paper, while multi-source geospatial data can generally be quickly obtained at present, to realize effective vegetation mapping in mountainous areas when samples are difficult to collect due to their perilous terrain and inaccessible deep forest, we propose a novel and intelligent method of sample collection for machine-learning (ML)-based vegetation mapping. First, we employ geo-objects (i.e., polygons) from topographic partitioning and constrained segmentation as basic mapping units and formalize the problem as a supervised classification process using ML algorithms. Second, a previously available vegetation map with rough-scale label information is overlaid on the geo-object-level polygons, and candidate geo-object-based samples can be identified when all the grids’ labels of vegetation types within the geo-objects are the same. Third, various kinds of geo-object-level features are extracted according to high-spatial-resolution remote sensing (HSR-RS) images and multi-source geospatial data. Some unreliable geo-object-based samples are rejected in the candidate set by comparing their features and the rules based on local expert knowledge. Finally, based on these automatically collected samples, we train the model using a random forest (RF)-based algorithm and classify all the geo-objects with labels of vegetation types. A case experiment of Taibai Mountain in China shows that the methodology has the ability to achieve good vegetation mapping results with the rapid and convenient sample collection scheme. The map with a finer geographic distribution pattern of vegetation could clearly promote the vegetation resources investigation and monitoring of the study area; thus, the methodological framework is worth popularizing in the mapping areas such as mountainous regions where the field survey sampling is difficult to implement.

2021 ◽  
Vol 13 (5) ◽  
pp. 1021
Author(s):  
Hu Ding ◽  
Jiaming Na ◽  
Shangjing Jiang ◽  
Jie Zhu ◽  
Kai Liu ◽  
...  

Artificial terraces are of great importance for agricultural production and soil and water conservation. Automatic high-accuracy mapping of artificial terraces is the basis of monitoring and related studies. Previous research achieved artificial terrace mapping based on high-resolution digital elevation models (DEMs) or imagery. As a result of the importance of the contextual information for terrace mapping, object-based image analysis (OBIA) combined with machine learning (ML) technologies are widely used. However, the selection of an appropriate classifier is of great importance for the terrace mapping task. In this study, the performance of an integrated framework using OBIA and ML for terrace mapping was tested. A catchment, Zhifanggou, in the Loess Plateau, China, was used as the study area. First, optimized image segmentation was conducted. Then, features from the DEMs and imagery were extracted, and the correlations between the features were analyzed and ranked for classification. Finally, three different commonly-used ML classifiers, namely, extreme gradient boosting (XGBoost), random forest (RF), and k-nearest neighbor (KNN), were used for terrace mapping. The comparison with the ground truth, as delineated by field survey, indicated that random forest performed best, with a 95.60% overall accuracy (followed by 94.16% and 92.33% for XGBoost and KNN, respectively). The influence of class imbalance and feature selection is discussed. This work provides a credible framework for mapping artificial terraces.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4893 ◽  
Author(s):  
Hejar Shahabi ◽  
Ben Jarihani ◽  
Sepideh Tavakkoli Piralilou ◽  
David Chittleborough ◽  
Mohammadtaghi Avand ◽  
...  

Gully erosion is a dominant source of sediment and particulates to the Great Barrier Reef (GBR) World Heritage area. We selected the Bowen catchment, a tributary of the Burdekin Basin, as our area of study; the region is associated with a high density of gully networks. We aimed to use a semi-automated object-based gully networks detection process using a combination of multi-source and multi-scale remote sensing and ground-based data. An advanced approach was employed by integrating geographic object-based image analysis (GEOBIA) with current machine learning (ML) models. These included artificial neural networks (ANN), support vector machines (SVM), and random forests (RF), and an ensemble ML model of stacking to deal with the spatial scaling problem in gully networks detection. Spectral indices such as the normalized difference vegetation index (NDVI) and topographic conditioning factors, such as elevation, slope, aspect, topographic wetness index (TWI), slope length (SL), and curvature, were generated from Sentinel 2A images and the ALOS 12-m digital elevation model (DEM), respectively. For image segmentation, the ESP2 tool was used to obtain three optimal scale factors. On using object pureness index (OPI), object matching index (OMI), and object fitness index (OFI), the accuracy of each scale in image segmentation was evaluated. The scale parameter of 45 with OFI of 0.94, which is a combination of OPI and OMI indices, proved to be the optimal scale parameter for image segmentation. Furthermore, segmented objects based on scale 45 were overlaid with 70% and 30% of a prepared gully inventory map to select the ML models’ training and testing objects, respectively. The quantitative accuracy assessment methods of Precision, Recall, and an F1 measure were used to evaluate the model’s performance. Integration of GEOBIA with the stacking model using a scale of 45 resulted in the highest accuracy in detection of gully networks with an F1 measure value of 0.89. Here, we conclude that the adoption of optimal scale object definition in the GEOBIA and application of the ensemble stacking of ML models resulted in higher accuracy in the detection of gully networks.


2019 ◽  
Vol 11 (10) ◽  
pp. 1181 ◽  
Author(s):  
Norman Kerle ◽  
Markus Gerke ◽  
Sébastien Lefèvre

The 6th biennial conference on object-based image analysis—GEOBIA 2016—took place in September 2016 at the University of Twente in Enschede, The Netherlands (see www [...]


2016 ◽  
Vol 11 (4) ◽  
pp. 791-799 ◽  
Author(s):  
Rina Kagawa ◽  
Yoshimasa Kawazoe ◽  
Yusuke Ida ◽  
Emiko Shinohara ◽  
Katsuya Tanaka ◽  
...  

Background: Phenotyping is an automated technique that can be used to distinguish patients based on electronic health records. To improve the quality of medical care and advance type 2 diabetes mellitus (T2DM) research, the demand for T2DM phenotyping has been increasing. Some existing phenotyping algorithms are not sufficiently accurate for screening or identifying clinical research subjects. Objective: We propose a practical phenotyping framework using both expert knowledge and a machine learning approach to develop 2 phenotyping algorithms: one is for screening; the other is for identifying research subjects. Methods: We employ expert knowledge as rules to exclude obvious control patients and machine learning to increase accuracy for complicated patients. We developed phenotyping algorithms on the basis of our framework and performed binary classification to determine whether a patient has T2DM. To facilitate development of practical phenotyping algorithms, this study introduces new evaluation metrics: area under the precision-sensitivity curve (AUPS) with a high sensitivity and AUPS with a high positive predictive value. Results: The proposed phenotyping algorithms based on our framework show higher performance than baseline algorithms. Our proposed framework can be used to develop 2 types of phenotyping algorithms depending on the tuning approach: one for screening, the other for identifying research subjects. Conclusions: We develop a novel phenotyping framework that can be easily implemented on the basis of proper evaluation metrics, which are in accordance with users’ objectives. The phenotyping algorithms based on our framework are useful for extraction of T2DM patients in retrospective studies.


Author(s):  
Pooja Nagpal ◽  
Shalini Bhaskar Bajaj ◽  
Aman Jatain ◽  
Sarika Chaudhary

It is the capability of humans and as well as vehicles to automatically detect object level motion that results into collision less navigation and also provides sense of situation. This paper presents a technique for secure object level motion detection which yields more accurate results. To achieve this, python code has been used along with various machine learning libraries. The detection algorithm uses the advantage of background subtraction and fed in data to detect even the slightest movement this system makes use of a webcam to scan a premise and detect movement of any sort; on the recognition of any activity it immediately sends an alert message to the owner of the system via mail. Any person requiring a surveillance system can use it.


2021 ◽  
Vol 157 (A3) ◽  
Author(s):  
D Handayani ◽  
W Sediono ◽  
A Shah

The paper describes the supervised method approach to identifying vessel anomaly behaviour. The vessel anomaly behaviour is determined by learning from self-reporting maritime systems based on the Automatic Identification System (AIS). The AIS is a real world vessel reporting data system, which has been recently made compulsory by the International Convention for the Safety of Life and Sea (SOLAS) for vessels over 300 gross tons and most commercial vessels such as cargo ships, passenger vessels, tankers, etc. In this paper, we describe the use of Bayesian networks (BNs) approach to identify the behaviour of the vessel of interest. The BNs is a machine learning technique based on probabilistic theory that represents a set of random variables and their conditional independencies via directed acyclic graph (DAG). Previous studies showed that the BNs have important advantages compared to other machine learning techniques. Among them are that expert knowledge can be included in the BNs model, and that humans can understand and interpret the BNs model more readily. This work proves that the BNs technique is applicable to the identification of vessel anomaly behaviour.


Sign in / Sign up

Export Citation Format

Share Document