scholarly journals Unsupervised Multitemporal Building Change Detection Framework Based on Cosegmentation Using Time-Series SAR

2021 ◽  
Vol 13 (3) ◽  
pp. 471
Author(s):  
Kaiyu Zhang ◽  
Xikai Fu ◽  
Xiaolei Lv ◽  
Jili Yuan

Building change detection using remote sensing images is essential for various applications such as urban management and marketing planning. However, most change detection approaches can only detect the intensity or type of change. The aim of this study is to dig for more change information from time-series synthetic aperture radar (SAR) images, such as the change frequency and the change moments. This paper proposes a novel multitemporal building change detection framework that can generate change frequency map (CFM) and change moment maps (CMMs) from multitemporal SAR images. We first give definitions of CFM and CMMs. Then we generate change feature using four proposed generators. After that, a new cosegmentation method combining raw images and change feature is proposed to divide time-series images into changed and unchanged areas separately. Secondly, the proposed cosegmentation and the morphological building index (MBI) are combined to extract changed building objects. Then, the logical conjunction between the cosegmentation results and the binarized MBI is performed to recognize every moment of change. In the post-processing step, we use fragment removal to increase accuracy. Finally, we propose a novel accuracy assessment index for CFM. We call this index average change difference (ACD). Compared to the traditional multitemporal change detection methods, our method outperforms other approaches in terms of both qualitative results and quantitative indices of ACD using two TerraSAR-X datasets. The experiments show that the proposed method is effective in generating CFM and CMMs.

2019 ◽  
Vol 85 (10) ◽  
pp. 715-724 ◽  
Author(s):  
Heng Wan ◽  
Yang Shao ◽  
James B. Campbell ◽  
Xinwei Deng

Annual urban change information is important for an improved understanding of urban dynamics and continuous modeling of urban ecosystem processes. This study examined Landsat-derived Normalized Difference Vegetation Index (NDVI) time series for characterizing annual urban change. To reduce impacts from cloud contamination and missing data, United States Geological Survey (USGS) Landsat Analysis Ready Data were processed to derive annual NDVI layers using a maximum value composite algorithm. National Land Cover Database land cover products from 2001 and 2011 were used as references for generating a decadal urban change mask. Within the decadal urban change mask and using annual NDVI as input, we examined three time-series change detection methods to pinpoint specific year of urban change: (a) minimum-value method, (b) break-point detection, and (c) simple-threshold identification. For accuracy assessment, we divided change pixels into urbanization and urban-intensification pixel groups, defined by initial land cover types. We used Google Earth's High-Resolution Imagery Archive as primary reference data for detailed accuracy assessment. Overall, the urbanization pixel group has good change detection accuracies of above 82% for all three change detection algorithms. The break-point detection method resulted in the highest overall accuracy of 88%. Overall accuracies for urban intensification pixel group were in the range of 35%–76%, depending on choice of change detection algorithm, length of input time-series, and further division of pixel subgroups.


2021 ◽  
Vol 13 (15) ◽  
pp. 2869
Author(s):  
MohammadAli Hemati ◽  
Mahdi Hasanlou ◽  
Masoud Mahdianpari ◽  
Fariba Mohammadimanesh

With uninterrupted space-based data collection since 1972, Landsat plays a key role in systematic monitoring of the Earth’s surface, enabled by an extensive and free, radiometrically consistent, global archive of imagery. Governments and international organizations rely on Landsat time series for monitoring and deriving a systematic understanding of the dynamics of the Earth’s surface at a spatial scale relevant to management, scientific inquiry, and policy development. In this study, we identify trends in Landsat-informed change detection studies by surveying 50 years of published applications, processing, and change detection methods. Specifically, a representative database was created resulting in 490 relevant journal articles derived from the Web of Science and Scopus. From these articles, we provide a review of recent developments, opportunities, and trends in Landsat change detection studies. The impact of the Landsat free and open data policy in 2008 is evident in the literature as a turning point in the number and nature of change detection studies. Based upon the search terms used and articles included, average number of Landsat images used in studies increased from 10 images before 2008 to 100,000 images in 2020. The 2008 opening of the Landsat archive resulted in a marked increase in the number of images used per study, typically providing the basis for the other trends in evidence. These key trends include an increase in automated processing, use of analysis-ready data (especially those with atmospheric correction), and use of cloud computing platforms, all over increasing large areas. The nature of change methods has evolved from representative bi-temporal pairs to time series of images capturing dynamics and trends, capable of revealing both gradual and abrupt changes. The result also revealed a greater use of nonparametric classifiers for Landsat change detection analysis. Landsat-9, to be launched in September 2021, in combination with the continued operation of Landsat-8 and integration with Sentinel-2, enhances opportunities for improved monitoring of change over increasingly larger areas with greater intra- and interannual frequency.


2019 ◽  
Vol 11 (2) ◽  
pp. 142 ◽  
Author(s):  
Wenping Ma ◽  
Hui Yang ◽  
Yue Wu ◽  
Yunta Xiong ◽  
Tao Hu ◽  
...  

In this paper, a novel change detection approach based on multi-grained cascade forest(gcForest) and multi-scale fusion for synthetic aperture radar (SAR) images is proposed. It detectsthe changed and unchanged areas of the images by using the well-trained gcForest. Most existingchange detection methods need to select the appropriate size of the image block. However, thesingle size image block only provides a part of the local information, and gcForest cannot achieve agood effect on the image representation learning ability. Therefore, the proposed approach choosesdifferent sizes of image blocks as the input of gcForest, which can learn more image characteristicsand reduce the influence of the local information of the image on the classification result as well.In addition, in order to improve the detection accuracy of those pixels whose gray value changesabruptly, the proposed approach combines gradient information of the difference image with theprobability map obtained from the well-trained gcForest. Therefore, the image edge information canbe enhanced and the accuracy of edge detection can be improved by extracting the image gradientinformation. Experiments on four data sets indicate that the proposed approach outperforms otherstate-of-the-art algorithms.


2019 ◽  
Vol 11 (5) ◽  
pp. 570 ◽  
Author(s):  
Inacio Bueno ◽  
Fausto Acerbi Júnior ◽  
Eduarda Silveira ◽  
José Mello ◽  
Luís Carvalho ◽  
...  

Change detection methods are often incapable of accurately detecting changes within time series that are heavily influenced by seasonal variations. Techniques for de-seasoning time series or methods that apply the spatial context have been used to improve the results of change detection. However, few studies have explored Landsat’s shortwave infrared channel (SWIR 2) to discriminate between seasonal changes and land use/land cover changes (LULCC). Here, we explored the effectiveness of Operational Land Imager (OLI) spectral bands and vegetation indices for detecting deforestation in highly seasonal areas of Brazilian savannas. We adopted object-based image analysis (OBIA), applying a multidate segmentation to an OLI time series to generate input data for discrimination of deforestation from seasonal changes using the Random Forest (RF) algorithm. We found adequate separability between deforested objects and seasonal changes using SWIR 2. Using spectral indices computed from SWIR 2, the RF algorithm generated a change map with an overall accuracy of 88.3%. For deforestation, the producer’s accuracy was 88.0% and the user’s accuracy was 84.6%. The SWIR 2 channel as well as the mid-infrared burn index presented the highest importance among spectral variables computed by the RF average impurity decrease measure. Our results give support to further change detection studies regarding to suitable spectral channels and provided a useful foundation for savanna change detection using an object-based method applied to Landsat time series.


2020 ◽  
Author(s):  
Jie Zhao ◽  
Marco Chini ◽  
Ramona Pelich ◽  
Patrick Matgen ◽  
Renaud Hostache ◽  
...  

<p>Change detection has been widely used in many flood-mapping algorithms using pairs of Synthetic Aperture Radar (SAR) intensity images. The rationale is that when the right conditions are met, the appearance of floodwater results in a significant decrease of backscatter.  However, limitations still exist in areas where the SAR backscatter is not sufficiently impacted by surface changes due to floodwater. For example, in shadow areas, the backscatter is stable over time because the SAR signal does not reach the ground due to prominent topography or obstacles on the ground (e.g., buildings). Densely vegetated forest is another insensitive region due to low capability of SAR C-band wavelengths to penetrate its canopy. Moreover, although in principle SAR can sense water over different land cover classes such as arid regions, streets and buildings, the backscatter changes over time could not be detected because in such areas the scattering variation caused by the presence of water might be negligible with respect to the normal “unflooded” state. The identification of the abovementioned areas where SAR does not allow detecting water based on change detection methods, hereafter called exclusion map, is crucial for providing reliable SAR-based flood maps.</p><p>In this study, insensitive areas are identified using long time-series of Sentinel-1 data and the final exclusion map is classified in four distinctive classes: shadow, layover, urban areas and dense forest. In the proposed method the identification of insensitive areas is based on the use of pixel-based time series backscatter statistics (minimum, maximum, median and standard deviation) coupled with a local spatial autocorrelation analysis (i.e. Moran’s I, Getis-Ord Gi and Geary’s C). In order to evaluate the extracted exclusion map, which is quite unique, we employ a comprehensive ground truth dataset that is obtained by combining different products: 1) a shadow/layover map generated using a 25m-resolution DEM and the geometric acquisition parameters of the SAR data; 2) 20m resolution imperviousness map provided by Copernicus, as well as a high-resolution global urban footprint (GUF) data provided by DLR; 3) a 20m tree cover density (TCD) map provided by Copernicus. In the end, the exclusion map is used to mask out unclassified areas in the flood maps derived by an automatic change detection method, which is expected to enhance flood maps by removing areas where the presence or absence of floodwater cannot be evidenced. In addition, we argue that our insensitive area map provides valuable information for improving the calibration, validation and regular updating of hydraulic models using SAR derived flood extent maps.</p>


Author(s):  
Zhenlei Xie ◽  
Ruoming Shi ◽  
Ling Zhu ◽  
Shu Peng ◽  
Xu Chen

Change detection method is an efficient way in the aim of land cover product updating on the basis of the existing products, and at the same time saving lots of cost and time. Considering the object-oriented change detection method for 30m resolution Landsat image, analysis of effect of different segmentation scales on the method of the object-oriented is firstly carried out. On the other hand, for analysing the effectiveness and availability of pixel-based change method, the two indices which complement each other are the differenced Normalized Difference Vegetation Index (dNDVI), the Change Vector (CV) were used. To demonstrate the performance of pixel-based and object-oriented, accuracy assessment of these two change detection results will be conducted by four indicators which include overall accuracy, omission error, commission error and Kappa coefficient.


Author(s):  
Zhenlei Xie ◽  
Ruoming Shi ◽  
Ling Zhu ◽  
Shu Peng ◽  
Xu Chen

Change detection method is an efficient way in the aim of land cover product updating on the basis of the existing products, and at the same time saving lots of cost and time. Considering the object-oriented change detection method for 30m resolution Landsat image, analysis of effect of different segmentation scales on the method of the object-oriented is firstly carried out. On the other hand, for analysing the effectiveness and availability of pixel-based change method, the two indices which complement each other are the differenced Normalized Difference Vegetation Index (dNDVI), the Change Vector (CV) were used. To demonstrate the performance of pixel-based and object-oriented, accuracy assessment of these two change detection results will be conducted by four indicators which include overall accuracy, omission error, commission error and Kappa coefficient.


2020 ◽  
Vol 12 (13) ◽  
pp. 2089 ◽  
Author(s):  
Elise Colin Koeniguer ◽  
Jean-Marie Nicolas

This paper discusses change detection in SAR time-series. First, several statistical properties of the coefficient of variation highlight its pertinence for change detection. Subsequently, several criteria are proposed. The coefficient of variation is suggested to detect any kind of change. Furthermore, several criteria that are based on ratios of coefficients of variations are proposed to detect long events, such as construction test sites, or point-event, such as vehicles. These detection methods are first evaluated on theoretical statistical simulations to determine the scenarios where they can deliver the best results. The simulations demonstrate the greater sensitivity of the coefficient of variation to speckle mixtures, as in the case of agricultural plots. Conversely, they also demonstrate the greater specificity of the other criteria for the cases addressed: very short event or longer-term changes. Subsequently, detection performance is assessed on real data for different types of scenes and sensors (Sentinel-1, UAVSAR). In particular, a quantitative evaluation is performed with a comparison of our solutions with baseline methods. The proposed criteria achieve the best performance, with reduced computational complexity. On Sentinel-1 images containing mainly construction test sites, our best criterion reaches a probability of change detection of 90% for a false alarm rate that is equal to 5%. On UAVSAR images containing boats, the criteria proposed for short events achieve a probability of detection equal to 90% of all pixels belonging to the boats, for a false alarm rate that is equal to 2%.


2019 ◽  
Vol 11 (8) ◽  
pp. 926 ◽  
Author(s):  
Jili Yuan ◽  
Xiaolei Lv ◽  
Fangjia Dou ◽  
Jingchuan Yao

The existing unsupervised multitemporal change detection approaches for synthetic aperture radar (SAR) images based on the pixel level usually suffer from the serious influence of speckle noise, and the classification accuracy of temporal change patterns is liable to be affected by the generation method of similarity matrices and the pre-specified cluster number. To address these issues, a novel time-series change detection method with high efficiency is proposed in this paper. Firstly, spatial feature extraction using local statistical information on patches is conducted to reduce the noise and for subsequent temporal grouping. Secondly, a density-based clustering method is adopted to categorize the pixel series in the temporal dimension, in view of its efficiency and robustness. Change detection and classification results are then obtained by a fast differential strategy in the final step. The experimental results and analysis of synthetic and realistic time-series SAR images acquired by TerraSAR-X in urban areas demonstrate the effectiveness of the proposed method, which outperforms other approaches in terms of both qualitative results and quantitative indices of macro F1-scores and micro F1-scores. Furthermore, we make the case that more temporal change information for buildings can be obtained, which includes when the first and last detected change occurred and the frequency of changes.


Sign in / Sign up

Export Citation Format

Share Document