scholarly journals Object-Based Change Detection in the Cerrado Biome Using Landsat Time Series

2019 ◽  
Vol 11 (5) ◽  
pp. 570 ◽  
Author(s):  
Inacio Bueno ◽  
Fausto Acerbi Júnior ◽  
Eduarda Silveira ◽  
José Mello ◽  
Luís Carvalho ◽  
...  

Change detection methods are often incapable of accurately detecting changes within time series that are heavily influenced by seasonal variations. Techniques for de-seasoning time series or methods that apply the spatial context have been used to improve the results of change detection. However, few studies have explored Landsat’s shortwave infrared channel (SWIR 2) to discriminate between seasonal changes and land use/land cover changes (LULCC). Here, we explored the effectiveness of Operational Land Imager (OLI) spectral bands and vegetation indices for detecting deforestation in highly seasonal areas of Brazilian savannas. We adopted object-based image analysis (OBIA), applying a multidate segmentation to an OLI time series to generate input data for discrimination of deforestation from seasonal changes using the Random Forest (RF) algorithm. We found adequate separability between deforested objects and seasonal changes using SWIR 2. Using spectral indices computed from SWIR 2, the RF algorithm generated a change map with an overall accuracy of 88.3%. For deforestation, the producer’s accuracy was 88.0% and the user’s accuracy was 84.6%. The SWIR 2 channel as well as the mid-infrared burn index presented the highest importance among spectral variables computed by the RF average impurity decrease measure. Our results give support to further change detection studies regarding to suitable spectral channels and provided a useful foundation for savanna change detection using an object-based method applied to Landsat time series.

2019 ◽  
Vol 11 (23) ◽  
pp. 2779 ◽  
Author(s):  
Katie Awty-Carroll ◽  
Pete Bunting ◽  
Andy Hardy ◽  
Gemma Bell

Access to temporally dense time series such as data from the Landsat and Sentinel-2 missions has lead to an increase in methods which aim to monitor land cover change on a per-acquisition rather than a yearly basis. Evaluating the accuracy and limitations of these methods can be difficult because validation data are limited and often rely on human interpretation. Simulated time series offer an objective method for evaluating and comparing between change detection algorithms. A set of simulated time series was used to evaluate four change detection methods: (1) Breaks for Additive and Seasonal Trend (BFAST); (2) BFAST Monitor; (3) Continuous Change Detection and Classification (CCDC); and (4) Exponentially Weighted Moving Average Change Detection (EWMACD). In total, 151,200 simulations were generated to represent a range of abrupt, gradual, and seasonal changes. EWMACD was found to give the best performance overall, correctly identifying the true date of change in 76.6% of cases. CCDC performed worst (51.8%). BFAST performed well overall but correctly identified less than 10% of seasonal changes (changes in amplitude, length of season, or number of seasons). All methods showed some decrease in performance with increased noise and missing data, apart from BFAST Monitor which improved when data were removed. The following recommendations are made as a starting point for future studies: EWMACD should be used for detection of lower magnitude changes and changes in seasonality; CCDC should be used for robust detection of complete land cover class changes; EWMACD and BFAST are suitable for noisy datasets, depending on the application; and CCDC should be used where there are high quantities of missing data. The simulated datasets have been made freely available online as a foundation for future work.


2021 ◽  
Vol 13 (15) ◽  
pp. 2869
Author(s):  
MohammadAli Hemati ◽  
Mahdi Hasanlou ◽  
Masoud Mahdianpari ◽  
Fariba Mohammadimanesh

With uninterrupted space-based data collection since 1972, Landsat plays a key role in systematic monitoring of the Earth’s surface, enabled by an extensive and free, radiometrically consistent, global archive of imagery. Governments and international organizations rely on Landsat time series for monitoring and deriving a systematic understanding of the dynamics of the Earth’s surface at a spatial scale relevant to management, scientific inquiry, and policy development. In this study, we identify trends in Landsat-informed change detection studies by surveying 50 years of published applications, processing, and change detection methods. Specifically, a representative database was created resulting in 490 relevant journal articles derived from the Web of Science and Scopus. From these articles, we provide a review of recent developments, opportunities, and trends in Landsat change detection studies. The impact of the Landsat free and open data policy in 2008 is evident in the literature as a turning point in the number and nature of change detection studies. Based upon the search terms used and articles included, average number of Landsat images used in studies increased from 10 images before 2008 to 100,000 images in 2020. The 2008 opening of the Landsat archive resulted in a marked increase in the number of images used per study, typically providing the basis for the other trends in evidence. These key trends include an increase in automated processing, use of analysis-ready data (especially those with atmospheric correction), and use of cloud computing platforms, all over increasing large areas. The nature of change methods has evolved from representative bi-temporal pairs to time series of images capturing dynamics and trends, capable of revealing both gradual and abrupt changes. The result also revealed a greater use of nonparametric classifiers for Landsat change detection analysis. Landsat-9, to be launched in September 2021, in combination with the continued operation of Landsat-8 and integration with Sentinel-2, enhances opportunities for improved monitoring of change over increasingly larger areas with greater intra- and interannual frequency.


2015 ◽  
Vol 8 (2) ◽  
pp. 327-335 ◽  
Author(s):  
Daniel Hölbling ◽  
Barbara Friedl ◽  
Clemens Eisank

Abstract Earth observation (EO) data are very useful for the detection of landslides after triggering events, especially if they occur in remote and hardly accessible terrain. To fully exploit the potential of the wide range of existing remote sensing data, innovative and reliable landslide (change) detection methods are needed. Recently, object-based image analysis (OBIA) has been employed for EO-based landslide (change) mapping. The proposed object-based approach has been tested for a sub-area of the Baichi catchment in northern Taiwan. The focus is on the mapping of landslides and debris flows/sediment transport areas caused by the Typhoons Aere in 2004 and Matsa in 2005. For both events, pre- and post-disaster optical satellite images (SPOT-5 with 2.5 m spatial resolution) were analysed. A Digital Elevation Model (DEM) with 5 m spatial resolution and its derived products, i.e., slope and curvature, were additionally integrated in the analysis to support the semi-automated object-based landslide mapping. Changes were identified by comparing the normalised values of the Normalized Difference Vegetation Index (NDVI) and the Green Normalized Difference Vegetation Index (GNDVI) of segmentation-derived image objects between pre- and post-event images and attributed to landslide classes.


2020 ◽  
Vol 12 (22) ◽  
pp. 3798
Author(s):  
Lei Ma ◽  
Michael Schmitt ◽  
Xiaoxiang Zhu

Recently, time-series from optical satellite data have been frequently used in object-based land-cover classification. This poses a significant challenge to object-based image analysis (OBIA) owing to the presence of complex spatio-temporal information in the time-series data. This study evaluates object-based land-cover classification in the northern suburbs of Munich using time-series from optical Sentinel data. Using a random forest classifier as the backbone, experiments were designed to analyze the impact of the segmentation scale, features (including spectral and temporal features), categories, frequency, and acquisition timing of optical satellite images. Based on our analyses, the following findings are reported: (1) Optical Sentinel images acquired over four seasons can make a significant contribution to the classification of agricultural areas, even though this contribution varies between spectral bands for the same period. (2) The use of time-series data alleviates the issue of identifying the “optimal” segmentation scale. The finding of this study can provide a more comprehensive understanding of the effects of classification uncertainty on object-based dense multi-temporal image classification.


2018 ◽  
Vol 10 (9) ◽  
pp. 1467 ◽  
Author(s):  
Meghan Halabisky ◽  
Chad Babcock ◽  
L. Moskal

Research related to object-based image analysis has typically relied on data inputs that provide information on the spectral and spatial characteristics of objects, but the temporal domain is far less explored. For some objects, which are spectrally similar to other landscape features, their temporal pattern may be their sole defining characteristic. When multiple images are used in object-based image analysis, it is often constrained to a specific number of images which are selected because they cover the perceived range of temporal variability of the features of interest. Here, we provide a method to identify wetlands using a time series of Landsat imagery by building a Random Forest model using each image observation as an explanatory variable. We tested our approach in Douglas County, Washington, USA. Our approach exploiting the temporal domain classified wetlands with a high level of accuracy and reduced the number of spectrally similar false positives. We explored how sampling design (i.e., random, stratified, purposive) and temporal resolution (i.e., number of image observations) affected classification accuracy. We found that sampling design introduced bias in different ways, but did not have a substantial impact on overall accuracy. We also found that a higher number of image observations up to a point improved classification accuracy dependent on the selection of images used in the model. While time series analysis has been part of pixel-based remote sensing for many decades, with improved computer processing and increased availability of time series datasets (e.g., Landsat archive), it is now much easier to incorporate time series into object-based image analysis classification.


2020 ◽  
Author(s):  
Jie Zhao ◽  
Marco Chini ◽  
Ramona Pelich ◽  
Patrick Matgen ◽  
Renaud Hostache ◽  
...  

<p>Change detection has been widely used in many flood-mapping algorithms using pairs of Synthetic Aperture Radar (SAR) intensity images. The rationale is that when the right conditions are met, the appearance of floodwater results in a significant decrease of backscatter.  However, limitations still exist in areas where the SAR backscatter is not sufficiently impacted by surface changes due to floodwater. For example, in shadow areas, the backscatter is stable over time because the SAR signal does not reach the ground due to prominent topography or obstacles on the ground (e.g., buildings). Densely vegetated forest is another insensitive region due to low capability of SAR C-band wavelengths to penetrate its canopy. Moreover, although in principle SAR can sense water over different land cover classes such as arid regions, streets and buildings, the backscatter changes over time could not be detected because in such areas the scattering variation caused by the presence of water might be negligible with respect to the normal “unflooded” state. The identification of the abovementioned areas where SAR does not allow detecting water based on change detection methods, hereafter called exclusion map, is crucial for providing reliable SAR-based flood maps.</p><p>In this study, insensitive areas are identified using long time-series of Sentinel-1 data and the final exclusion map is classified in four distinctive classes: shadow, layover, urban areas and dense forest. In the proposed method the identification of insensitive areas is based on the use of pixel-based time series backscatter statistics (minimum, maximum, median and standard deviation) coupled with a local spatial autocorrelation analysis (i.e. Moran’s I, Getis-Ord Gi and Geary’s C). In order to evaluate the extracted exclusion map, which is quite unique, we employ a comprehensive ground truth dataset that is obtained by combining different products: 1) a shadow/layover map generated using a 25m-resolution DEM and the geometric acquisition parameters of the SAR data; 2) 20m resolution imperviousness map provided by Copernicus, as well as a high-resolution global urban footprint (GUF) data provided by DLR; 3) a 20m tree cover density (TCD) map provided by Copernicus. In the end, the exclusion map is used to mask out unclassified areas in the flood maps derived by an automatic change detection method, which is expected to enhance flood maps by removing areas where the presence or absence of floodwater cannot be evidenced. In addition, we argue that our insensitive area map provides valuable information for improving the calibration, validation and regular updating of hydraulic models using SAR derived flood extent maps.</p>


Author(s):  
R. Qin ◽  
A. Gruen

There is a great demand for studying the changes of buildings over time. The current trend for building change detection combines the orthophoto and DSM (Digital Surface Models). The pixel-based change detection methods are very sensitive to the quality of the images and DSMs, while the object-based methods are more robust towards these problems. In this paper, we propose a supervised method for building change detection. After a segment-based SVM (Support Vector Machine) classification with features extracted from the orthophoto and DSM, we focus on the detection of the building changes of different periods by measuring their height and texture differences, as well as their shapes. A decision tree analysis is used to assess the probability of change for each building segment and the traffic lighting system is used to indicate the status "change", "non-change" and "uncertain change" for building segments. The proposed method is applied to scanned aerial photos of the city of Zurich in 2002 and 2007, and the results have demonstrated that our method is able to achieve high detection accuracy.


Author(s):  
V. Hron ◽  
L. Halounova

The Fundamental Base of Geographic Data of the Czech Republic (hereinafter FBGD) is a national 2D geodatabase at a 1:10,000 scale with more than 100 geographic objects. This paper describes the design of the permanent updating mechanism of buildings in FBGD. The proposed procedure belongs to the category of hybrid change detection (HCD) techniques which combine pixel-based and object-based evaluation. The main sources of information for HCD are cadastral information and bi-temporal vertical digital aerial photographs. These photographs have great information potential because they contain multispectral, position and also elevation information. Elevation information represents a digital surface model (DSM) which can be obtained using the image matching technique. Pixel-based evaluation of bi-temporal DSMs enables fast localization of places with potential building changes. These coarse results are subsequently classified through the object-based image analysis (OBIA) using spectral, textural and contextual features and GIS tools. The advantage of the two-stage evaluation is the pre-selection of locations where image segmentation (a computationally demanding part of OBIA) is performed. It is not necessary to apply image segmentation to the entire scene, but only to the surroundings of detected changes, which contributes to significantly faster processing and lower hardware requirements. The created technology is based on open-source software solutions that allow easy portability on multiple computers and parallelization of processing. This leads to significant savings of financial resources which can be expended on the further development of FBGD.


Sign in / Sign up

Export Citation Format

Share Document