scholarly journals Effects of Bark Beetle Outbreaks on Forest Landscape Pattern in the Southern Rocky Mountains, U.S.A

2021 ◽  
Vol 13 (6) ◽  
pp. 1089
Author(s):  
Kyle C. Rodman ◽  
Robert A. Andrus ◽  
Cori L. Butkiewicz ◽  
Teresa B. Chapman ◽  
Nathan S. Gill ◽  
...  

Since the late 1990s, extensive outbreaks of native bark beetles (Curculionidae: Scolytinae) have affected coniferous forests throughout Europe and North America, driving changes in carbon storage, wildlife habitat, nutrient cycling, and water resource provisioning. Remote sensing is a crucial tool for quantifying the effects of these disturbances across broad landscapes. In particular, Landsat time series (LTS) are increasingly used to characterize outbreak dynamics, including the presence and severity of bark beetle-caused tree mortality, though broad-scale LTS-based maps are rarely informed by detailed field validation. Here we used spatial and temporal information from LTS products, in combination with extensive field data and Random Forest (RF) models, to develop 30-m maps of the presence (i.e., any occurrence) and severity (i.e., cumulative percent basal area mortality) of beetle-caused tree mortality 1997–2019 in subalpine forests throughout the Southern Rocky Mountains, USA. Using resultant maps, we also quantified spatial patterns of cumulative tree mortality throughout the region, an important yet poorly understood concept in beetle-affected forests. RF models using LTS products to predict presence and severity performed well, with 80.3% correctly classified (Kappa = 0.61) and R2 = 0.68 (RMSE = 17.3), respectively. We found that ≥10,256 km2 of subalpine forest area (39.5% of the study area) was affected by bark beetles and 19.3% of the study area experienced ≥70% tree mortality over the twenty-three year period. Variograms indicated that severity was autocorrelated at scales < 250 km. Interestingly, cumulative patch-size distributions showed that areas with a near-total loss of the overstory canopy (i.e., ≥90% mortality) were relatively small (<0.24 km2) and isolated throughout the study area. Our findings help to inform an understanding of the variable effects of bark beetle outbreaks across complex forested regions and provide insight into patterns of disturbance legacies, landscape connectivity, and susceptibility to future disturbance.

Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 656
Author(s):  
Javier E. Mercado

Research Highlights: Atypical and poorly understood attacks by Dendroctonus rufipennis (Kirby) to Pinus contorta Doug. ex Loudon were detected in the southern Rocky Mountains (SRM). The phenomenon is confirmed across all examined area. Its reproduction is described for the first time as well as the first attacks of D. adjunctus Blandf. in that host. Improved detection and diagnostics of D. rufipennis will allow a simpler, and efficient identification of the species. It will improve the detection capacity by pest detection specialists and entomologists, which will increase our understanding of the phenomena within and beyond the known range. Background and Objectives: In addition to D. ponderosae Hopk. other Dendroctonus species, sometimes together, attacked P. contorta that grew intermixed with Picea engelmannii in the SRM’ subalpine forest. The identification of these beetles was difficult. The goal was to improve the detection and identification of the species from similar Dendroctonus spp. attacking that host and to uncover biological facts about the phenomena. Materials and Methods: Dendroctonus attacking P. contorta were collected along the entire SRM, their attack signs and behavior were recorded. These characteristics were revised from those in the literature and new characters were introduced and tested. Results: The identification of Dendroctonus bark beetles attacking P. contorta in the SRM was improved using revised and new characters including attack signs, attack behavior, and adult beetle characters. An improved identification key couplet is presented to effectively distinguish D. murrayanae from D. rufipennis. Conclusions: Simplified insect identifications that are both accessible to users with different levels of expertise and are based on insect characters, their attack pattern, and signs, like the present, improve detection of insects of interest. Efficient insect detections allow a better understanding of the capabilities they have and the impact they cause to the woodland ecosystems we study, protect, and manage around the globe.


2016 ◽  
Vol 77 (4) ◽  
pp. 352-357
Author(s):  
Dominik Kulakowski

Abstract Forests in Europe and North America are being affected by large and severe outbreaks of bark beetles, which have caused widespread concern about forest health and have led to proposals for tree removal in affected or susceptible forests. Any such intervention, as well as broader decisions of whether any active interventions are appropriate, should be based on the best scientific data. This is true for all forests, including those whose purposes include timber production, watershed protection, biogeochemical function and recreation, and especially protected and conservation areas as the latter often provide particularly unique and important cultural, social, scientific and other ecosystem services. Here, I summarize peer-reviewed literature on the effects of bark beetle outbreaks and on silvicultural treatments aimed at mitigating beetle-induced tree mortality. From an objective scientific perspective, beetle outbreaks do not destroy forests. Instead, in many cases they play an important role in promoting wildlife, biodiversity and other ecological services. The best available data indicate that logging in conservation areas is unlikely to stop ongoing bark beetle outbreaks and instead may be more ecologically detrimental to the forests than the outbreaks themselves. If the purpose of a forest is timber production, then logging is desirable and can be planned based on appropriate analyses of timber yield and economic profit. However, in areas in which conservation is the determined goal, it is recommended that cutting trees be limited to removing hazards, such as trees that might fall in areas of high human activity in order to limit property damage and personal injury. Based on extensive research in Europe and North America, logging beetle-affected forests is inconsistent with most conservation goals.


2010 ◽  
Vol 25 (2) ◽  
pp. 81-87 ◽  
Author(s):  
E. Matthew Hansen ◽  
José F. Negron ◽  
A. Steven Munson ◽  
John A. Anhold

Abstract Tree susceptibility to bark beetle-caused mortality has been linked to stand characteristics such as basal area (BA) and average tree size, factors that can be manipulated through partial cutting. There is no experimental evidence, however, demonstrating the efficacy of partial cutting in spruce type. Such experiments are very difficult to complete because of the inability to manipulate bark beetle populations needed to challenge treated stands. To circumvent this difficulty, we identified spruce stands that were partially cut (for nonexperimental reasons) in advance ofbeetle activity and compared beetle-caused mortality to that in nearby spruce stands that were not treated. Treated stands had fewer infested stems and less infested BA than untreated stands, as well as smaller proportions of infested stems and BA. Untreated stands, however, had more residualspruce stems and BA than treated stands. Most of this difference was among stems 3–11 in. dbh with little difference in survivorship among larger stems. Spruce regeneration was not significantly different among treated and untreated stands. Spruce stand density index, spruce BA, and the number of spruce stems >11 in. dbh were the stand variables most strongly correlated with host mortality measurements. Insect population pressure appears to influence the degree of protection to residual spruce following partial cutting.


2014 ◽  
Vol 44 (6) ◽  
pp. 554-561 ◽  
Author(s):  
Rick G. Kelsey ◽  
D. Gallego ◽  
F.J. Sánchez-García ◽  
J.A. Pajares

Tree mortality from temperature-driven drought is occurring in forests around the world, often in conjunction with bark beetle outbreaks when carbon allocation to tree defense declines. Physiological metrics for detecting stressed trees with enhanced vulnerability prior to bark beetle attacks remain elusive. Ethanol, water, monoterpene concentrations, and composition were examined in the phloem and sapwood of drought-stressed Aleppo pine (Pinus halepensis Mill.) freshly attacked by mature Mediterranean pine shoot beetles (Tomicus destruens (Wollaston, 1865)) and in neighboring unattacked trees. The attacked trees were more water-stressed and contained, on average, 2.1 and 2.4 times more ethanol in the phloem and sapwood, respectively, than the neighboring attack-free trees. This response is consistent with the known attraction of T. destruens to ethanol. Most monoterpene concentrations in the phloem, but not sapwood, were greater in tissues of attacked trees, whereas compositional differences were minor between the two tree groups for both tissues. Tissue water content explained much of the variation in phloem monoterpene concentrations, which increased as water in the phloem declined, suggesting that higher constitutive quantities existed in the more stressed trees prior to the attacks. Monoterpenes may have contributed to host tree selection by T. destruens, but their potential influence is considered less important than that of ethanol based on beetle responses to these compounds in previous trapping studies. This is the first report of elevated ethanol concentrations in tissues of trees experiencing natural drought stress and suggests that ethanol measurements in severely water-stressed trees may allow early detection of those most vulnerable to bark beetle attack.


Ecosphere ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. e02369 ◽  
Author(s):  
Jacob S. Ivan ◽  
Amy E. Seglund ◽  
Richard L. Truex ◽  
Eric S. Newkirk

2015 ◽  
Vol 70 (9-10) ◽  
pp. 265-273 ◽  
Author(s):  
Rizan Rahmani ◽  
Erik Hedenström ◽  
Martin Schroeder

Abstract Tree mortality caused by bark beetles has increased in recent decades in both Europe and North America. In a large recent outbreak in central Sweden the bark beetle Polygraphus poligraphus was often found together with the spruce bark beetle Ips typographus in killed trees. To increase the understanding of the aggregation behavior of P. poligraphus we used solid phase microextraction (SPME) to collect volatile organic compounds (VOCs) released from single P. poligraphus males, with and without added females, colonizing Norway spruce stem sections and analyzed the sampled compounds by combined gas chromatography and mass spectrometry (GC-MS). High amounts of terpinen-4-ol, a substance found in the hindguts of P. poligraphus males in earlier studies, were released by colonizing males. The emission of both enantiomers of terpinen-4-ol was monitored by GC-MS over time as the males aged in the absence and presence of females. Single males emitted (R)-(–)-terpinen-4-ol for up to 60 days in high enantiomeric purity but the enantiomeric excess (ee) varied between males, and also for the same individual, over time from 96.3% to 99.3% ee. In the presence of females, males also emitted terpinen-4-ol for up to 50 days but now in lower amounts and with lower enantiomeric purity varying from 67.7% ee to 99.3% ee. Small quantities of other volatile compounds were emitted from the colonizing beetles including cis- and trans-4-thujanol, both of which were previously shown to be present in the hindguts of males. In earlier studies frontalin was found to attract P. poligraphus, but in our study it was not identified among emitted compounds from colonizing beetles.


2012 ◽  
Vol 77 (1) ◽  
pp. 96-103 ◽  
Author(s):  
Christy E. Briles ◽  
Cathy Whitlock ◽  
David J. Meltzer

The last glacial-interglacial transition (LGIT; 19–9 ka) was characterized by rapid climate changes and significant ecosystem reorganizations worldwide. In western Colorado, one of the coldest locations in the continental US today, mountain environments during the late-glacial period are poorly known. Yet, archaeological evidence from the Mountaineer site (2625 m elev.) indicates that Folsom-age Paleoindians were over-wintering in the Gunnison Basin during the Younger Dryas Chronozone (YDC; 12.9–11.7 ka). To determine the vegetation and fire history during the LGIT, and possible explanations for occupation during a period thought to be harsher than today, a 17-ka-old sediment core from Lily Pond (3208 m elev.) was analyzed for pollen and charcoal and compared with other high-resolution records from the southern Rocky Mountains. Widespread tundra and Picea parkland and low fire activity in the cold wet late-glacial period transitioned to open subalpine forest and increased fire activity in the Bølling–Allerød period as conditions became warmer and drier. During the YDC, greater winter snowpack than today and prolonged wet springs likely expanded subalpine forest to lower elevations than today, providing construction material and fuel for the early inhabitants. In the early to middle Holocene, arid conditions resulted in xerophytic vegetation and frequent fire.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Thomas Seth Davis ◽  
Paul R. Rhoades ◽  
Andrew J. Mann ◽  
Terry Griswold

Abstract Landscape-scale bark beetle outbreaks alter forest structure with direct and indirect effects on plants and animals in forest ecosystems. Using alpine spruce forest and a native bee community as a study system, we tested how tree mortality from bark beetles impacts bee foraging habitats and populations. Bees were collected across the growing season (early-, middle-, and late-season) for two years using passive trapping methods, and collections were used to analyze patterns in species abundances and diversity. Three important findings emerged: (1) forest stands that were post-outbreak had 62% higher floral density and 68% more floral species during peak bloom, respectively, than non-affected stands; (2) bee captures were highest early-season (June) and were not strongly affected by bark beetle outbreak; however, mean number of bee species and Shannon–Weiner diversity were significantly higher in post-outbreak stands and this effect was pronounced early in the growing season. Corresponding analysis of β-diversity indicated higher accumulation of bee biodiversity in post-outbreak stands and a turnover in the ratio of Bombus: Osmia; (3) bee captures were linked to variation in foraging habitat, but number of bee species and diversity were more strongly predicted by forest structure. Our results provide evidence of increased alpine bee biodiversity in post-outbreak stands and increased availability of floral resources. We conclude that large-scale disturbance from bark beetle outbreaks may drive shifts in pollinator community composition through cascading effects on floral resources, mediated via mortality of overstory trees.


2010 ◽  
Vol 25 (4) ◽  
pp. 181-185 ◽  
Author(s):  
Donald M. Grosman ◽  
Christopher J. Fettig ◽  
Carl L. Jorgensen ◽  
A. Steven Munson

Abstract Bark beetles (Coleoptera: Curculionidae, Scolytinae) are important tree mortality agents in western coniferous forests. Protection of individual trees from bark beetle attack has historically involved applications of liquid formulations of contact insecticides to the tree bole using hydraulic sprayers. More recently, researchers looking for more portable and environmentally safe alternatives have examined the effectiveness of injecting small quantities of systemic insecticides directly into trees. In this study, we evaluated trunk injections of experimental formulations of emamectin benzoate and fipronil for preventing tree mortality due to attack by western pine beetle (Dendroctonus brevicomis LeConte) on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) in California, mountain pine beetle (Dendroctonus ponderosae Hopkins) on lodgepole pine (Pinus contorta Dougl. ex Loud.) in Idaho, and spruce beetle (D. rufipennis [Kirby]) on Engelmann spruce (Picea engelmannii Parry ex Engelm.) in Utah. Fipronil appeared ineffective for protecting P. ponderosa from mortality due to D. brevicomis over the 3 years in California because of insufficient mortality of untreated, baited control trees the first 2 years and high mortality of the fipronil-treated trees in the third year. Emamectin benzoate was effective in providing protection of P. ponderosa from D. brevicomis during the third year following a single application. To our knowledge, this is the first demonstration of the successful application of a systemic insecticide for protecting individual conifers from mortality due to bark beetle attack in the western United States. Estimates of efficacy could not be made during both field seasons in P. contorta because of insufficient mortality in control trees. Both emamectin benzoate and fipronil were ineffective for protecting P. engelmannii from D. rufipennis. Lower ambient and soil temperatures and soil moisture may have limited chemical movement and thus efficacy at the Idaho and Utah sites.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 604 ◽  
Author(s):  
Pavel Mezei ◽  
Mária Potterf ◽  
Jaroslav Škvarenina ◽  
Jakob Gulddahl Rasmussen ◽  
Rastislav Jakuš

In recent decades, Norway spruce (Picea abies L. Karst.) forests of the High Tatra Mountains have suffered unprecedented tree mortality caused by European spruce bark beetle (Ips typographus L.). Analysis of the spatiotemporal pattern of bark beetle outbreaks across the landscape in consecutive years can provide new insights into the population dynamics of tree-killing insects. A bark beetle outbreak occurred in the High Tatra Mountains after a storm damaged more than 10,000 ha of forests in 2004. We combined yearly Landsat-derived bark beetle infestation spots from 2006 to 2014 and meteorological data to identify the susceptibility of forest stands to beetle infestation. We found that digital elevation model (DEM)-derived potential radiation loads predicted beetle infestation, especially in the peak phase of beetle epidemic. Moreover, spots attacked at the beginning of our study period had higher values of received solar radiation than spots at the end of the study period, indicating that bark beetles prefer sites with higher insolation during outbreak. We conclude that solar radiation, easily determined from the DEM, better identified beetle infestations than commonly used meteorological variables. We recommend including potential solar radiation in beetle infestation prediction models.


Sign in / Sign up

Export Citation Format

Share Document