scholarly journals Local PM2.5 Hotspot Detector at 300 m Resolution: A Random Forest–Convolutional Neural Network Joint Model Jointly Trained on Satellite Images and Meteorology

2021 ◽  
Vol 13 (7) ◽  
pp. 1356
Author(s):  
Tongshu Zheng ◽  
Michael Bergin ◽  
Guoyin Wang ◽  
David Carlson

Satellite-based rapid sweeping screening of localized PM2.5 hotspots at fine-scale local neighborhood levels is highly desirable. This motivated us to develop a random forest–convolutional neural network–local contrast normalization (RF–CNN–LCN) pipeline that detects local PM2.5 hotspots at a 300 m resolution using satellite imagery and meteorological information. The RF–CNN joint model in the pipeline uses three meteorological variables and daily 3 m/pixel resolution PlanetScope satellite imagery to generate daily 300 m ground-level PM2.5 estimates. The downstream LCN processes the estimated PM2.5 maps to reveal local PM2.5 hotspots. The RF–CNN joint model achieved a low normalized root mean square error for PM2.5 of within ~31% and normalized mean absolute error of within ~19% on the holdout samples in both Delhi and Beijing. The RF–CNN–LCN pipeline reasonably predicts urban PM2.5 local hotspots and coolspots by capturing both the main intra-urban spatial trends in PM2.5 and the local variations in PM2.5 with urban landscape, with local hotspots relating to compact urban spatial structures and coolspots being open areas and green spaces. Based on 20 sampled representative neighborhoods in Delhi, our pipeline revealed an annual average 9.2 ± 4.0 μg m−3 difference in PM2.5 between the local hotspots and coolspots within the same community. In some cases, the differences were much larger; for example, at the Indian Gandhi International Airport, the increase was 20.3 μg m−3 from the coolest spot (the residential area immediately outside the airport) to the hottest spot (airport runway). This work provides a possible means of automatically identifying local PM2.5 hotspots at 300 m in heavily polluted megacities and highlights the potential existence of substantial health inequalities in long-term outdoor PM2.5 exposures even within the same local neighborhoods between local hotspots and coolspots.

2020 ◽  
Vol 230 ◽  
pp. 117451 ◽  
Author(s):  
Tongshu Zheng ◽  
Michael H. Bergin ◽  
Shijia Hu ◽  
Joshua Miller ◽  
David E. Carlson

Author(s):  
Endang Anggiratih ◽  
Agfianto Eko Putra

Ship identification on satellite imagery can be used for fisheries management, monitoring of smuggling activities, ship traffic services, and naval warfare. However, high-resolution satellite imagery also makes the segmentation of the ship difficult in the background, so that to handle it requires reliable features so that it can be identified adequately between large vessels, small vessels and not ships. The Convolutional Neural Network (CNN) method, which has the advantage of being able to extract features automatically and produce reliable features that facilitate ship identification. This study combines CNN ZFNet architecture with the Random Forest method. The training was conducted with the aim of knowing the accuracy of the ZFNet layers to produce the best features, which are characterized by high accuracy, combined with the Random Forest method. Testing the combination of this method is done with two parameters, namely batch size and a number of trees. The test results identify large vessels with an accuracy of 87.5% and small vessels with an accuracy of not up to 50%.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1592
Author(s):  
Jonguk Kim ◽  
Hyansu Bae ◽  
Hyunwoo Kang ◽  
Suk Gyu Lee

This paper suggests an algorithm for extracting the location of a building from satellite imagery and using that information to modify the roof content. The materials are determined by measuring the conditions where the building is located and detecting the position of a building in broad satellite images. Depending on the incomplete roof or material, there is a greater possibility of great damage caused by disaster situations or external shocks. To address these problems, we propose an algorithm to detect roofs and classify materials in satellite images. Satellite imaging locates areas where buildings are likely to exist based on roads. Using images of the detected buildings, we classify the material of the roof using a proposed convolutional neural network (CNN) model algorithm consisting of 43 layers. In this paper, we propose a CNN structure to detect areas with buildings in large images and classify roof materials in the detected areas.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yang Wang ◽  
Moyang Li

Modern urban landscape is a simple ecosystem, which is of great significance to the sustainable development of the city. This study proposes a landscape information extraction model based on deep convolutional neural network, studies the multiscale landscape convolutional neural network classification method, constructs a landscape information extraction model based on multiscale CNN, and finally analyzes the quantitative effect of deep convolutional neural network. The results show that the overall kappa coefficient is 0.91 and the classification accuracy is 93% by calculating the confusion matrix, production accuracy, and user accuracy. The method proposed in this study can identify more than 90% of water targets, the user accuracy and production accuracy are 99.78% and 91.94%, respectively, and the overall accuracy is 93.33%. The method proposed in this study is obviously better than other methods, and the kappa coefficient and overall accuracy are the best. This study provides a certain reference value for the quantitative evaluation of modern urban landscape spatial scale.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Rongji Zhang ◽  
Feng Sun ◽  
Ziwen Song ◽  
Xiaolin Wang ◽  
Yingcui Du ◽  
...  

Traffic flow forecasting is the key to an intelligent transportation system (ITS). Currently, the short-term traffic flow forecasting methods based on deep learning need to be further improved in terms of accuracy and computational efficiency. Therefore, a short-term traffic flow forecasting model GA-TCN based on genetic algorithm (GA) optimized time convolutional neural network (TCN) is proposed in this paper. The prediction error was considered as the fitness value and the genetic algorithm was used to optimize the filters, kernel size, batch size, and dilations hyperparameters of the temporal convolutional neural network to determine the optimal fitness prediction model. Finally, the model was tested using the public dataset PEMS. The results showed that the average absolute error of the proposed GA-TCN decreased by 34.09%, 22.42%, and 26.33% compared with LSTM, GRU, and TCN in working days, while the average absolute error of the GA-TCN decreased by 24.42%, 2.33%, and 3.92% in weekend days, respectively. The results indicate that the model proposed in this paper has a better adaptability and higher prediction accuracy in short-term traffic flow forecasting compared with the existing models. The proposed model can provide important support for the formulation of a dynamic traffic control scheme.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2927
Author(s):  
Jiyeong Hong ◽  
Seoro Lee ◽  
Joo Hyun Bae ◽  
Jimin Lee ◽  
Woon Ji Park ◽  
...  

Predicting dam inflow is necessary for effective water management. This study created machine learning algorithms to predict the amount of inflow into the Soyang River Dam in South Korea, using weather and dam inflow data for 40 years. A total of six algorithms were used, as follows: decision tree (DT), multilayer perceptron (MLP), random forest (RF), gradient boosting (GB), recurrent neural network–long short-term memory (RNN–LSTM), and convolutional neural network–LSTM (CNN–LSTM). Among these models, the multilayer perceptron model showed the best results in predicting dam inflow, with the Nash–Sutcliffe efficiency (NSE) value of 0.812, root mean squared errors (RMSE) of 77.218 m3/s, mean absolute error (MAE) of 29.034 m3/s, correlation coefficient (R) of 0.924, and determination coefficient (R2) of 0.817. However, when the amount of dam inflow is below 100 m3/s, the ensemble models (random forest and gradient boosting models) performed better than MLP for the prediction of dam inflow. Therefore, two combined machine learning (CombML) models (RF_MLP and GB_MLP) were developed for the prediction of the dam inflow using the ensemble methods (RF and GB) at precipitation below 16 mm, and the MLP at precipitation above 16 mm. The precipitation of 16 mm is the average daily precipitation at the inflow of 100 m3/s or more. The results show the accuracy verification results of NSE 0.857, RMSE 68.417 m3/s, MAE 18.063 m3/s, R 0.927, and R2 0.859 in RF_MLP, and NSE 0.829, RMSE 73.918 m3/s, MAE 18.093 m3/s, R 0.912, and R2 0.831 in GB_MLP, which infers that the combination of the models predicts the dam inflow the most accurately. CombML algorithms showed that it is possible to predict inflow through inflow learning, considering flow characteristics such as flow regimes, by combining several machine learning algorithms.


2019 ◽  
Vol 9 (16) ◽  
pp. 3312 ◽  
Author(s):  
Zhu ◽  
Ge ◽  
Liu

In order to realize the non-destructive intelligent identification of weld surface defects, an intelligent recognition method based on deep learning is proposed, which is mainly formed by convolutional neural network (CNN) and forest random. First, the high-level features are automatically learned through the CNN. Random forest is trained with extracted high-level features to predict the classification results. Secondly, the weld surface defects images are collected and preprocessed by image enhancement and threshold segmentation. A database of weld surface defects is established using pre-processed images. Finally, comparative experiments are performed on the weld surface defects database. The results show that the accuracy of the method combined with CNN and random forest can reach 0.9875, and it also demonstrates the method is effective and practical.


Sign in / Sign up

Export Citation Format

Share Document