scholarly journals Time-Lagged Correlation between Soil Moisture and Intra-Annual Dynamics of Vegetation on the Mongolian Plateau

2021 ◽  
Vol 13 (8) ◽  
pp. 1527
Author(s):  
Li Na ◽  
Risu Na ◽  
Yongbin Bao ◽  
Jiquan Zhang

Soil moisture is a reliable water resource for plant growth in arid and semi-arid regions. Characterizing the interaction between soil moisture and vegetation is important for assessing the sustainability of terrestrial ecosystems. This study explores the spatiotemporal characteristics of four soil moisture layers (layer 1: 0–7 cm, layer 2: 7–28 cm, layer 3: 28–100 cm, and layer 4: 100–289 cm) and the time-lagged correlation with the normalized difference vegetation index (NDVI) for different vegetation types on an intra-annual scale on the Mongolian Plateau (MP). The most significant results indicated that: (1) the four layers of soil moisture can be roughly divided into rapid change (layers 1 and 2), active (layer 3), and stable (layer 4) layers. The soil moisture content in the different vegetation regions was forest > grassland > desert vegetation. (2) The soil moisture in layer 1 showed the strongest positive correlation with NDVI in the whole area; meanwhile, the soil moisture of layers 2 and 3 showed the strongest negative correlation with the NDVI mainly in grassland and desert, and layer 4 showed the strongest negative correlation with the NDVI in the forest. (3) Mutual responses of NDVI and deep layer soil moisture required a longer time compared with the shallow layer. In the annual time scale, the NDVI was affected by the change in soil moisture in most of the study area, except for coniferous forest and desert vegetation regions. (4) Under the different stages of vegetation change, the soil moisture changes advance than NDVI about 3 months during the greening stage, while the NDVI changes advance than soil moisture by 0.5 months during the browning stage. Regardless of the stage, changes in soil moisture are initiated from the shallow layer and advance to the deep layer. The results of this study provide deep insight into the relationship between soil moisture and vegetation in arid and semi-arid regions.

2020 ◽  
Vol 12 (16) ◽  
pp. 2587
Author(s):  
Yan Nie ◽  
Ying Tan ◽  
Yuqin Deng ◽  
Jing Yu

As a basic agricultural parameter in the formation, transformation, and consumption of surface water resources, soil moisture has a very important influence on the vegetation growth, agricultural production, and healthy operation of regional ecosystems. The Aksu river basin is a typical semi-arid agricultural area which seasonally suffers from water shortage. Due to the lack of knowledge on soil moisture change, the water management and decision-making processes have been a difficult issue for local government. Therefore, soil moisture monitoring by remote sensing became a reasonable way to schedule crop irrigation and evaluate the irrigation efficiency. Compared to in situ measurements, the use of remote sensing for the monitoring of soil water content is convenient and can be repetitively applied over a large area. To verify the applicability of the typical drought index to the rapid acquisition of soil moisture in arid and semi-arid regions, this study simulated, compared, and validated the effectiveness of soil moisture inversion. GF-1 WFV images, Landsat 8 OLI images, and the measured soil moisture data were used to determine the Perpendicular Drought Index (PDI), the Modified Perpendicular Drought Index (MPDI), and the Vegetation Adjusted Perpendicular Drought Index (VAPDI). First, the determination coefficients of the correlation analyses on the PDI, MPDI, VAPDI, and measured soil moisture in the 0–10, 10–20, and 20–30 cm depth layers based on the GF-1 WFV and Landsat 8 OLI images were good. Notably, in the 0–10 cm depth layers, the average determination coefficient was 0.68; all models met the accuracy requirements of soil moisture inversion. Both indicated that the drought indices based on the Near Infrared (NIR)-Red spectral space derived from the optical remote sensing images are more sensitive to soil moisture near the surface layer; however, the accuracy of retrieving the soil moisture in deep layers was slightly lower in the study area. Second, in areas of vegetation coverage, MPDI and VAPDI had a higher inversion accuracy than PDI. To a certain extent, they overcame the influence of mixed pixels on the soil moisture spectral information. VAPDI modified by Perpendicular Vegetation Index (PVI) was not susceptible to vegetation saturation and, thus, had a higher inversion accuracy, which makes it performs better than MPDI’s in vegetated areas. Third, the spatial heterogeneity of the soil moisture retrieved by the GF-1 WFV and Landsat 8 OLI image were similar. However, the GF-1 WFV images were more sensitive to changes in the soil moisture, which reflected the actual soil moisture level covered by different vegetation. These results provide a practical reference for the dynamic monitoring of surface soil moisture, obtaining agricultural information and agricultural condition parameters in arid and semi-arid regions.


2009 ◽  
Vol 6 (5) ◽  
pp. 6425-6454
Author(s):  
H. Stephen ◽  
S. Ahmad ◽  
T. C. Piechota ◽  
C. Tang

Abstract. The Tropical Rainfall Measuring Mission (TRMM) carries aboard the Precipitation Radar (TRMMPR) that measures the backscatter (σ°) of the surface. σ° is sensitive to surface soil moisture and vegetation conditions. Due to sparse vegetation in arid and semi-arid regions, TRMMPR σ° primarily depends on the soil water content. In this study we relate TRMMPR σ° measurements to soil water content (ms) in Lower Colorado River Basin (LCRB). σ° dependence on ms is studied for different vegetation greenness values determined through Normalized Difference Vegetation Index (NDVI). A new model of σ° that couples incidence angle, ms, and NDVI is used to derive parameters and retrieve soil water content. The calibration and validation of this model are performed using simulated and measured ms data. Simulated ms is estimated using Variable Infiltration Capacity (VIC) model whereas measured ms is acquired from ground measuring stations in Walnut Gulch Experimental Watershed (WGEW). σ° model is calibrated using VIC and WGEW ms data during 1998 and the calibrated model is used to derive ms during later years. The temporal trends of derived ms are consistent with VIC and WGEW ms data with correlation coefficient (R) of 0.89 and 0.74, respectively. Derived ms is also consistent with the measured precipitation data with R=0.76. The gridded VIC data is used to calibrate the model at each grid point in LCRB and spatial maps of the model parameters are prepared. The model parameters are spatially coherent with the general regional topography in LCRB. TRMMPR σ° derived soil moisture maps during May (dry) and August (wet) 1999 are spatially similar to VIC estimates with correlation 0.67 and 0.76, respectively. This research provides new insights into Ku-band σ° dependence on soil water content in the arid regions.


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 232
Author(s):  
Qiao Zeng ◽  
Sergio Rossi ◽  
Bao Yang ◽  
Chun Qin ◽  
Gang Li

Although cambial reactivation is considered to be strongly dependent on temperature, the importance of water availability at the onset of xylogenesis in semi-arid regions still lacks sufficient evidences. In order to explore how environmental factors influence the initiation of cambial activity and wood formation, we monitored weekly cambial phenology in Qilian juniper (Juniperus przewalskii) from a semi-arid high-elevation region of northwestern China. We collected microcores from 12 trees at two elevations during the growing seasons in 2013 and 2014, testing the hypothesis that rainfall limits cambial reactivation in spring. Cambium was reactivated from late April to mid-May, and completed cell division from late July to early August, lasting 70–100 days. Both sites suffered from severe drought from January to April 2013, receiving < 1 mm of rain in April. In contrast, rainfall from January to April 2014 was 5–6 times higher than that in 2013. However, cambial reactivation in 2014 was delayed by 10 days. In spring, soil moisture gradually increased with warming temperatures, reaching 0.15 m3/m3 before the onset of xylogenesis, which may have ensured water availability for tree growth during the rainless period. We were unable to confirm the hypothesis that rainfall is a limiting factor of cambial reactivation. Our results highlight the importance of soil moisture in semi-arid regions, which better describe the environmental conditions that are favorable for cambial reactivation in water-limited ecosystems.


2020 ◽  
Vol 12 (23) ◽  
pp. 3973
Author(s):  
Wenzhao Li ◽  
Hesham El-Askary ◽  
Rejoice Thomas ◽  
Surya Prakash Tiwari ◽  
Karuppasamy P. Manikandan ◽  
...  

Drylands cover about 40% of the world’s land area and support two billion people, most of them living in developing countries that are at risk due to land degradation. Over the last few decades, there has been warming, with an escalation of drought and rapid population growth. This will further intensify the risk of desertification, which will seriously affect the local ecological environment, food security and people’s lives. The goal of this research is to analyze the hydrological and land cover characteristics and variability over global arid and semi-arid regions over the last decade (2010–2019) using an integrative approach of remotely sensed and physical process-based numerical modeling (e.g., Global Land Data Assimilation System (GLDAS) and Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) models) data. Interaction between hydrological and ecological indicators including precipitation, evapotranspiration, surface soil moisture and vegetation indices are presented in the global four types of arid and semi-arid areas. The trends followed by precipitation, evapotranspiration and surface soil moisture over the decade are also mapped using harmonic analysis. This study also shows that some hotspots in these global drylands, which exhibit different processes of land cover change, demonstrate strong coherency with noted groundwater variations. Various types of statistical measures are computed using the satellite and model derived values over global arid and semi-arid regions. Comparisons between satellite- (NASA-USDA Surface Soil Moisture and MODIS Evapotranspiration data) and model (FLDAS and GLDAS)-derived values over arid regions (BSh, BSk, BWh and BWk) have shown the over and underestimation with low accuracy. Moreover, general consistency is apparent in most of the regions between GLDAS and FLDAS model, while a strong discrepancy is also observed in some regions, especially appearing in the Nile Basin downstream hyper-arid region. Data-driven modelling approaches are thus used to enhance the models’ performance in this region, which shows improved results in multiple statistical measures ((RMSE), bias (ψ), the mean absolute percentage difference (|ψ|)) and the linear regression coefficients (i.e., slope, intercept, and coefficient of determination (R2)).


2006 ◽  
pp. 67-83 ◽  
Author(s):  
John D. ALBERTSON ◽  
Christopher A. WILLIAMS ◽  
Todd M. SCANLON ◽  
Nicola MONTALDO

2020 ◽  
Author(s):  
Yiben Cheng ◽  
Hongbin Zhan ◽  
Wenbin Yang ◽  
Qunou Jiang ◽  
Yunqi Wang ◽  
...  

Abstract. Desertification in semi-arid regions is currently a global environmental and societal problem. This research attempts to understand whether a 40-year-old rain-feed Artamisia sphaerocephala Krasch sand-fixing land in Three North Shelterbelt Program (3NSP) of China can be developed sustainably or not, using a newly designed lysimeter to monitor the precipitation-induced deep soil recharge (DSR) at 220 cm depth. Evapotranspiration is calculated through a water balance equation when precipitation and soil moisture data are collected. Comparison of soil particle sizes and soil moisture distributions in artificial sand-fixing land and neighboring bare land is made to assess the impact of sand-fixing reforestation. Results show that such a sand-fixing reforestation results in a root system being mainly developed in the horizontal direction and the changed soil particle distribution. Specifically, the sandy soil with 50.53 % medium sand has been transformed into a sandy soil with 68.53 % fine sand. Within the Artamisia sphaerocephala Krasch sand-fixing experimental area, the DSR values in bare sand plot and Artemisia sphaerocephala Krasch plot are respectively 283.6 mm and 90.6 mm in wet years, reflecting a difference of more than three times. The deep soil layer moisture in semi-arid sandy land is largely replenished by precipitation-induced infiltration. The DSR values of bare sandy land plot and Artemisia sphaerocephala Krasch plot are respectively 51.6 mm and 2 mm in dry years, a difference of more than 25 times. The proportions of DSR reduced by Artemisia sphaerocephala Krasch is 68.06 % and 96.12 % in wet and dry years, respectively. This research shows that Artamisia sphaerocephala Krasch in semi-arid region can continue to grow and has the capacity of fixing sand. It consumes a large amount of precipitated water, and reduces the amount of DSR considerably.


Sign in / Sign up

Export Citation Format

Share Document