scholarly journals Urban Heat Island Effects on Megacities in Desert Environments Using Spatial Network Analysis and Remote Sensing Data: A Case Study from Western Saudi Arabia

2021 ◽  
Vol 13 (10) ◽  
pp. 1941
Author(s):  
Mady Mohamed ◽  
Abdullah Othman ◽  
Abotalib Z. Abotalib ◽  
Abdulrahman Majrashi

Contemporary cities continue to face significant geoenvironmental challenges due to constant rapid urbanization. Furthermore, the governments of cities worldwide are considering the green cities approach to convert their cities’ weaknesses into opportunities. The 2030 Saudi vision supports smart growth concepts, with a vision of speeding up economic growth while ensuring that natural assets strengthen the country’s foundations. The urban heat island (UHI) effect is a threatening phenomenon that increases the required cooling loads and negatively affects urban communities and the quality of life, especially in arid environments. This study integrates remote sensing and spatial network analysis to investigate the UHI using the distribution of land surface temperatures (LST) extracted from satellite data during both winter and summer seasons in Makkah city. We investigated and compared the UHIs in two districts, Al-Sharashef and AlEskan, representing the organic and deformed iron-grid with fragmented paralleled street networks, respectively. The spatial analysis of different LST maps, which were derived from Landsat-8 images revealed significant differences between the two case studies. The mean temperature for the AlEskan district was 1–1.5 °C higher than that of the Al-Sharshaf district. This difference can be attributed to the different urban fabrics between the two districts. Moreover, the zones that are currently under construction show relatively higher LST compared to residential zones. The research revealed that the organic/compact urban fabric is better than the deformed iron-grid urban fabric in mitigating the UHI. However, these results are specific to the test site; however, they emphasize the role of integration of remote sensing and spatial network analysis in urban planning. In light of these findings, we recommend integrating remote sensing-based LST analysis with spatial analysis of urban fabrics to better understand the causal effects of UHI, especially in cities located in desert environments. This can help mitigate the impact of projected global warming and contribute to improving the quality of urban life.

Author(s):  
Yukun WANG ◽  
Akiko NISHIMURA ◽  
Yuji SUGIHARA ◽  
Guoyun ZHOU ◽  
Yukiko HISADA ◽  
...  

Author(s):  
Valentino Sangiorgio ◽  
Alessandra Capolupo ◽  
Eufemia Tarantino ◽  
Francesco Fiorito ◽  
Mattheos Santamouris

2019 ◽  
Vol 45 ◽  
pp. 686-692 ◽  
Author(s):  
Niloufar Shirani-bidabadi ◽  
Touraj Nasrabadi ◽  
Shahrzad Faryadi ◽  
Adnan Larijani ◽  
Majid Shadman Roodposhti

2018 ◽  
Vol 11 (1) ◽  
pp. 48 ◽  
Author(s):  
Decheng Zhou ◽  
Jingfeng Xiao ◽  
Stefania Bonafoni ◽  
Christian Berger ◽  
Kaveh Deilami ◽  
...  

The surface urban heat island (SUHI), which represents the difference of land surface temperature (LST) in urban relativity to neighboring non-urban surfaces, is usually measured using satellite LST data. Over the last few decades, advancements of remote sensing along with spatial science have considerably increased the number and quality of SUHI studies that form the major body of the urban heat island (UHI) literature. This paper provides a systematic review of satellite-based SUHI studies, from their origin in 1972 to the present. We find an exponentially increasing trend of SUHI research since 2005, with clear preferences for geographic areas, time of day, seasons, research foci, and platforms/sensors. The most frequently studied region and time period of research are China and summer daytime, respectively. Nearly two-thirds of the studies focus on the SUHI/LST variability at a local scale. The Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM+)/Thermal Infrared Sensor (TIRS) and Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) are the two most commonly-used satellite sensors and account for about 78% of the total publications. We systematically reviewed the main satellite/sensors, methods, key findings, and challenges of the SUHI research. Previous studies confirm that the large spatial (local to global scales) and temporal (diurnal, seasonal, and inter-annual) variations of SUHI are contributed by a variety of factors such as impervious surface area, vegetation cover, landscape structure, albedo, and climate. However, applications of SUHI research are largely impeded by a series of data and methodological limitations. Lastly, we propose key potential directions and opportunities for future efforts. Besides improving the quality and quantity of LST data, more attention should be focused on understudied regions/cities, methods to examine SUHI intensity, inter-annual variability and long-term trends of SUHI, scaling issues of SUHI, the relationship between surface and subsurface UHIs, and the integration of remote sensing with field observations and numeric modeling.


2019 ◽  
Vol 233 ◽  
pp. 972-992 ◽  
Author(s):  
Richard R. Shaker ◽  
Yaron Altman ◽  
Chengbin Deng ◽  
Eric Vaz ◽  
K.Wayne Forsythe

Sign in / Sign up

Export Citation Format

Share Document