scholarly journals Tropospheric Correction of Sentinel-1 Synthetic Aperture Radar Interferograms Using a High-Resolution Weather Model Validated by GNSS Measurements

2021 ◽  
Vol 13 (12) ◽  
pp. 2258
Author(s):  
Nikolaos Roukounakis ◽  
Panagiotis Elias ◽  
Pierre Briole ◽  
Dimitris Katsanos ◽  
Ioannis Kioutsioukis ◽  
...  

Synthetic Aperture Radar Interferometry (InSAR) is a space geodetic technique used for mapping deformations of the Earth’s surface. It has been developed and used increasingly during the last thirty years to measure displacements produced by earthquakes, volcanic activity and other crustal deformations. A limiting factor to this technique is the effect of the troposphere, as spatial and temporal variations in temperature, pressure, and relative humidity introduce significant phase delays in the microwave imagery, thus “masking” surface displacements due to tectonic or other geophysical processes. The use of Numerical Weather Prediction (NWP) models as a tropospheric correction method in InSAR can tackle several of the problems faced with other correction techniques (such as timing, spatial coverage and data availability issues). High-resolution tropospheric modelling is particularly useful in the case of single interferograms, where the removal of the atmospheric phase screen (and especially the highly variable turbulent component) can reveal large-amplitude deformation signals (as in the case of an earthquake). In the western Gulf of Corinth, prominent topography makes the removal of both the stratified and turbulent atmospheric phase screens a challenging task. Here, we investigate the extent to which a high-resolution WRF 1-km re-analysis can produce detailed tropospheric delay maps of the required accuracy by coupling its output (in terms of Zenith Total Delay or ZTD) with the vertical delay component in GNSS measurements. The model is operated with varying physical parameterization in order to identify the best configuration, and validated with GNSS zenithal tropospheric delays, providing a benchmark of real atmospheric conditions. We correct sixteen Sentinel-1A interferograms with differential delay maps at the line-of-sight (LOS) produced by WRF re-analysis. In most cases, corrections lead to a decrease in the phase gradient, with average root-mean-square (RMS) and standard deviation (SD) reductions in the wrapped phase of 6.0% and 19.3%, respectively. Results suggest a high potential of the model to reproduce both the long-wavelength stratified atmospheric signal and the short-wave turbulent atmospheric component which are evident in the interferograms.

2019 ◽  
Author(s):  
Νικόλαος Ρουκουνάκης

Το αντικείμενο της διδακτορικής διατριβής είναι η ανάπτυξη μίας καινοτόμου μεθοδολογίας για την αφαίρεση της τροποσφαιρικής επίδρασης από εφαρμογές διαστημικής γεωδαισίας (GNSS και InSAR), οι οποίες αποτελούν σημαντικά εργαλεία για την παρακολούθηση περιβαλλοντικών παραμέτρων όπου απαιτείται υψηλή ακρίβεια ανίχνευσης (της τάξεως των χιλιοστών του μέτρου), όπως για παράδειγμα η μέτρηση επιφανειακών μετατοπίσεων του φλοιού της γης εξαιτίας τεκτονικών φαινομένων. Η τροπόσφαιρα εισαγάγει μια καθυστέρηση στο ηλεκτρομαγνητικό σήμα, η οποία διορθώνεται μερικώς (μόνο για τα GNSS), με την χρήση εξειδικευμένων τροποσφαιρικών μοντέλων. Επιπροσθέτως, η ατμοσφαιρική διαστρωμάτωση και οι έντονες χωροχρονικές διακυμάνσεις των υδρατμών μέσα σε αυτήν παράγουν ένα πρόσθετο «θόρυβο» στην παραμόρφωση του εδάφους που υπολογίζεται με την μεθοδολογία της συμβολομετρίας (InSAR). Επομένως, η γνώση των τροποσφαιρικών παραμέτρων κατά μήκος του μέσου διάδοσης μπορεί να χρησιμοποιηθεί για τον υπολογισμό και την ελαχιστοποίηση της επίδραση του θορύβου αυτού, έτσι ώστε το εναπομένον σήμα να περιγράφει την παραμόρφωση, ως επί το πλείστον, λόγω τεκτονικών ή άλλων γεωφυσικών διεργασιών. Ο πρωταρχικός στόχος της παρούσας διδακτορικής διατριβής είναι η σύζευξη της κατακόρυφης συνιστώσας των μετρήσεων GNSS υψηλής ακρίβειας (Precise Point Positioning), με τα δεδομένα εξόδου ενός μετεωρολογικού μοντέλου υψηλής ανάλυσης (WRF), ώστε να εξακριβωθεί η εγκυρότητα των αποτελεσμάτων και να παραμετροποιηθεί κατάλληλα το μοντέλο. Ταυτόχρονα, η τρισδιάστατη «τομογραφία» της τροπόσφαιρας που προκύπτει, μας επιτρέπει την ανάκτηση, με μεγαλύτερη ακρίβεια, του συνολικού ποσοστού των υδρατμών στην κατακόρυφη στήλη (Integrated Water Vapor ή IWV) από τα τροποσφαιρικά δεδομένα των μετρήσεων, μετατρέποντας έτσι, δυνητικά, ένα επίγειο δίκτυο δεκτών GNSS σε μετεωρολογικό προγνωστικό εργαλείο. Επιπλέον, η μελέτη επεκτείνεται στην διόρθωση της τροποσφαιρικής επίδρασης σε συμβολογραφήματα από περιοδικές λήψεις InSAR, κατά την ίδια περίοδο, για την περιοχή του Δυτικού Κορινθιακού Κόλπου. Κατ’ αυτόν τον τρόπο, η μεθοδολογία συνδυάζει σημειακές μετεωρολογικές παρατηρήσεις (GNSS) με τρισδιάστατα χωρικά μετεωρολογικά δεδομένα (WRF), για την παραγωγή αναλυτικών χαρτών ζενιθείας τροποσφαιρικής διόρθωσης (ZTD), που χρησιμοποιούνται για την αφαίρεση του θορύβου από τις απεικονίσεις InSAR.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3580 ◽  
Author(s):  
Jie Wang ◽  
Ke-Hong Zhu ◽  
Li-Na Wang ◽  
Xing-Dong Liang ◽  
Long-Yong Chen

In recent years, multi-input multi-output (MIMO) synthetic aperture radar (SAR) systems, which can promote the performance of 3D imaging, high-resolution wide-swath remote sensing, and multi-baseline interferometry, have received considerable attention. Several papers on MIMO-SAR have been published, but the research of such systems is seriously limited. This is mainly because the superposed echoes of the multiple transmitted orthogonal waveforms cannot be separated perfectly. The imperfect separation will introduce ambiguous energy and degrade SAR images dramatically. In this paper, a novel orthogonal waveform separation scheme based on echo-compression is proposed for airborne MIMO-SAR systems. Specifically, apart from the simultaneous transmissions, the transmitters are required to radiate several times alone in a synthetic aperture to sense their private inner-aperture channels. Since the channel responses at the neighboring azimuth positions are relevant, the energy of the solely radiated orthogonal waveforms in the superposed echoes will be concentrated. To this end, the echoes of the multiple transmitted orthogonal waveforms can be separated by cancelling the peaks. In addition, the cleaned echoes, along with original superposed one, can be used to reconstruct the unambiguous echoes. The proposed scheme is validated by simulations.


Sign in / Sign up

Export Citation Format

Share Document