scholarly journals Coastal Remote Sensing: Merging Physical, Chemical, and Biological Data as Tailings Drift onto Buffalo Reef, Lake Superior

2021 ◽  
Vol 13 (13) ◽  
pp. 2434
Author(s):  
W. Charles Kerfoot ◽  
Martin M. Hobmeier ◽  
Gary Swain ◽  
Robert Regis ◽  
Varsha K. Raman ◽  
...  

On the Keweenaw Peninsula of Lake Superior, two stamp mills (Mohawk and Wolverine) discharged 22.7 million metric tonnes (MMT) of tailings (1901–1932) into the coastal zone off the town of Gay. Migrating along the shoreline, ca. 10 MMT of the tailings dammed stream and river outlets, encroached upon wetlands, and contaminated recreational beaches. A nearly equal amount of tailings moved across bay benthic environments into critical commercial fish spawning and rearing grounds. In the middle of the bay, Buffalo Reef is important for commercial and recreational lake trout and lake whitefish production (ca. 32% of the commercial catch in Keweenaw Bay, 22% along southern Lake Superior). Aerial photographs (1938–2016) and five LiDAR and multispectral over-flights (2008–2016) emphasize: (1) the enormous amounts of tailings moving along the beach; and (2) the bathymetric complexities of an equal amount migrating underwater across the shelf. However, remote sensing studies encounter numerous specific challenges in coastal environments. Here, we utilize a combination of elevation data (LiDAR digital elevation/bathymetry models) and in situ studies to generate a series of physical, chemical, and biological geospatial maps. The maps are designed to help assess the impacts of historical mining on Buffalo Reef. Underwater, sand mixtures have complicated multispectral bottom reflectance substrate classifications. An alternative approach, in situ simple particle classification, keying off distinct sand end members: (1) allows calculation of tailings (stamp sand) percentages; (2) aids indirect and direct assays of copper concentrations; and (3) permits determinations of density effects on benthic macro-invertebrates. The geospatial mapping shows how tailings are moving onto Buffalo Reef, the copper concentrations associated with the tailings, and how both strongly influence the density of benthic communities, providing an excellent example for the International Maritime Organization on how mining may influence coastal reefs. We demonstrate that when large amounts of mine tailings are discharged into coastal environments, temporal and spatial impacts are progressive, and strongly influence resident organisms. Next steps are to utilize a combination of hi-resolution LiDAR and sonar surveys, a fish-monitoring array, and neural network analysis to characterize the geometry of cobble fields where fish are successful or unsuccessful at producing young.

2020 ◽  
Vol 12 (13) ◽  
pp. 2172 ◽  
Author(s):  
Juliana Tavora ◽  
Emmanuel Boss ◽  
David Doxaran ◽  
Paul Hill

Suspended Particulate Matter (SPM) is a major constituent in coastal waters, involved in processes such as light attenuation, pollutant propagation, and waterways blockage. The spatial distribution of SPM is an indicator of deposition and erosion patterns in estuaries and coastal zones and a necessary input to estimate the material fluxes from the land through rivers to the sea. In-situ methods to estimate SPM provide limited spatial data in comparison to the coverage that can be obtained remotely. Ocean color remote sensing complements field measurements by providing estimates of the spatial distributions of surface SPM concentration in natural waters, with high spatial and temporal resolution. Existing methods to obtain SPM from remote sensing vary between purely empirical ones to those that are based on radiative transfer theory together with empirical inputs regarding the optical properties of SPM. Most algorithms use a single satellite band that is switched to other bands for different ranges of turbidity. The necessity to switch bands is due to the saturation of reflectance as SPM concentration increases. Here we propose a multi-band approach for SPM retrievals that also provides an estimate of uncertainty, where the latter is based on both uncertainties in reflectance and in the assumed optical properties of SPM. The approach proposed is general and can be applied to any ocean color sensor or in-situ radiometer system with red and near-infra-red bands. We apply it to six globally distributed in-situ datasets of spectral water reflectance and SPM measurements over a wide range of SPM concentrations collected in estuaries and coastal environments (the focus regions of our study). Results show good performance for SPM retrieval at all ranges of concentration. As with all algorithms, better performance may be achieved by constraining empirical assumptions to specific environments. To demonstrate the flexibility of the algorithm we apply it to a remote sensing scene from an environment with highly variable sediment concentrations.


2019 ◽  
Vol 11 (9) ◽  
pp. 1076 ◽  
Author(s):  
W. Charles Kerfoot ◽  
Martin M. Hobmeier ◽  
Sarah A. Green ◽  
Foad Yousef ◽  
Colin N. Brooks ◽  
...  

Where light penetration is excellent, the combination of LiDAR (Light Detection And Ranging) and passive bottom reflectance (multispectral, hyperspectral) greatly aids environmental studies. Over a century ago, two stamp mills (Mohawk and Wolverine) released 22.7 million metric tons of copper-rich tailings into Grand Traverse Bay (Lake Superior). The tailings are crushed basalt, with low albedo and spectral signatures different from natural bedrock (Jacobsville Sandstone) and bedrock-derived quartz sands. Multiple Lidar (CHARTS and CZMIL) over-flights between 2008–2016—complemented by ground-truth (Ponar sediment sampling, ROV photography) and passive bottom reflectance studies (3-band NAIP; 13-band Sentinal-2 orbital satellite; 48 and 288-band CASI)—clarified shoreline and underwater details of tailings migrations. Underwater, the tailings are moving onto Buffalo Reef, a major breeding site important for commercial and recreational lake trout and lake whitefish production (32% of the commercial catch in Keweenaw Bay, 22% in southern Lake Superior). If nothing is done, LiDAR-assisted hydrodynamic modeling predicts 60% tailings cover of Buffalo Reef within 10 years. Bottom reflectance studies confirmed stamp sand encroachment into cobble beds in shallow (0-5m) water but had difficulties in deeper waters (>8 m). Two substrate end-members (sand particles) showed extensive mixing but were handled by CASI hyperspectral imaging. Bottom reflectance studies suggested 25-35% tailings cover of Buffalo Reef, comparable to estimates from independent counts of mixed sand particles (ca. 35% cover of Buffalo Reef by >20% stamp sand mixtures).


Author(s):  
Michael J. Hansen ◽  
Mark P. Ebener ◽  
Richard G. Schorfhaar ◽  
Stephen T. Schram ◽  
Donald R. Schreiner ◽  
...  
Keyword(s):  

1994 ◽  
Vol 29 (1-2) ◽  
pp. 135-144 ◽  
Author(s):  
C. Deguchi ◽  
S. Sugio

This study aims to evaluate the applicability of satellite imagery in estimating the percentage of impervious area in urbanized areas. Two methods of estimation are proposed and applied to a small urbanized watershed in Japan. The area is considered under two different cases of subdivision; i.e., 14 zones and 17 zones. The satellite imageries of LANDSAT-MSS (Multi-Spectral Scanner) in 1984, MOS-MESSR(Multi-spectral Electronic Self-Scanning Radiometer) in 1988 and SPOT-HRV(High Resolution Visible) in 1988 are classified. The percentage of imperviousness in 17 zones is estimated by using these classification results. These values are compared with the ones obtained from the aerial photographs. The percent imperviousness derived from the imagery agrees well with those derived from aerial photographs. The estimation errors evaluated are less than 10%, the same as those obtained from aerial photographs.


2021 ◽  
Vol 13 (9) ◽  
pp. 1715
Author(s):  
Foyez Ahmed Prodhan ◽  
Jiahua Zhang ◽  
Fengmei Yao ◽  
Lamei Shi ◽  
Til Prasad Pangali Sharma ◽  
...  

Drought, a climate-related disaster impacting a variety of sectors, poses challenges for millions of people in South Asia. Accurate and complete drought information with a proper monitoring system is very important in revealing the complex nature of drought and its associated factors. In this regard, deep learning is a very promising approach for delineating the non-linear characteristics of drought factors. Therefore, this study aims to monitor drought by employing a deep learning approach with remote sensing data over South Asia from 2001–2016. We considered the precipitation, vegetation, and soil factors for the deep forwarded neural network (DFNN) as model input parameters. The study evaluated agricultural drought using the soil moisture deficit index (SMDI) as a response variable during three crop phenology stages. For a better comparison of deep learning model performance, we adopted two machine learning models, distributed random forest (DRF) and gradient boosting machine (GBM). Results show that the DFNN model outperformed the other two models for SMDI prediction. Furthermore, the results indicated that DFNN captured the drought pattern with high spatial variability across three penology stages. Additionally, the DFNN model showed good stability with its cross-validated data in the training phase, and the estimated SMDI had high correlation coefficient R2 ranges from 0.57~0.90, 0.52~0.94, and 0.49~0.82 during the start of the season (SOS), length of the season (LOS), and end of the season (EOS) respectively. The comparison between inter-annual variability of estimated SMDI and in-situ SPEI (standardized precipitation evapotranspiration index) showed that the estimated SMDI was almost similar to in-situ SPEI. The DFNN model provides comprehensive drought information by producing a consistent spatial distribution of SMDI which establishes the applicability of the DFNN model for drought monitoring.


2021 ◽  
pp. 105623
Author(s):  
Stefan Becker ◽  
Ramesh Prasad Sapkota ◽  
Binod Pokharel ◽  
Loknath Adhikari ◽  
Rudra Prasad Pokhrel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document