scholarly journals Simulation of Earth’s Outward Radiative Flux and Its Radiance in Moon-Based View

2021 ◽  
Vol 13 (13) ◽  
pp. 2535
Author(s):  
Haolu Shang ◽  
Yixing Ding ◽  
Huadong Guo ◽  
Guang Liu ◽  
Xiaoyu Liu ◽  
...  

To study the Earth’s energy balance and to extend exoplanet research, the Earth’s outward radiative flux and its radiance in the Moon-based view were simulated according to the Earth–Sun–Moon geometry model, with the help of ERA5. A framework was developed to identify the angular distribution model (ADM) of Earth’s surface and its scene types, according to the surface and atmospheric data from ERA5. Our simulation shows that the specific viewing geometry controls the periodical variations in the Moon-based view radiative flux and its radiance, which reflect the orbital period of the Moon. The seasonal variations in shortwave and longwave radiative flux follow the energy balance in general, which is probably influenced by the Earth albedo. The derived global ADM would help to identify the anisotropic factor of observations at DSCOVR. Our simulations prove that Moon-based observation is a valuable source for Earth observation and that the orbital information of exoplanets could be derived from the radiance observation.

2019 ◽  
Vol 11 (23) ◽  
pp. 2805 ◽  
Author(s):  
Yue Sui ◽  
Huadong Guo ◽  
Guang Liu ◽  
Yuanzhen Ren

The Antarctic and Arctic have always been critical areas of earth science research and are sensitive to global climate change. Global climate change exhibits diversity characteristics on both temporal and spatial scales. Since the Moon-based earth observation platform could provide large-scale, multi-angle, and long-term measurements complementary to the satellite-based Earth observation data, it is necessary to study the observation characteristics of this new platform. With deepening understanding of Moon-based observations, we have seen its good observation ability in the middle and low latitudes of the Earth’s surface, but for polar regions, we need to further study the observation characteristics of this platform. Based on the above objectives, we used the Moon-based Earth observation geometric model to quantify the geometric relationship between the Sun, Moon, and Earth. Assuming the sensor is at the center of the nearside of the Moon, the coverage characteristics of the earth feature points are counted. The observation intervals, access frequency, and the angle information of each point during 100 years were obtained, and the variation rule was analyzed. The research showed that the lunar platform could carry out ideal observations for the polar regions. For the North and South poles, a continuous observation duration of 14.5 days could be obtained, and as the latitude decreased, the duration time was reduced to less than one day at the latitude of 65° in each hemisphere. The dominant observation time of the North Pole is concentrated from mid-March to mid-September, and for the South Pole, it is the rest of the year, and as the latitude decreases, it extends outward from both sides. The annual coverage time and frequency will change with the relationship between the Moon and the Earth. This study also proves that the Moon-based observation has multi-angle observation advantages for the Arctic and the Antarctic areas, which can help better understand large-scale geoscientific phenomena. The above findings indicate that the Moon-based observation can be applied as a new type of remote sensing technology to the observation field of the Earth’s polar regions.


2020 ◽  
Vol 4 (4) ◽  
pp. 233-240
Author(s):  
V. E. Chebotarev ◽  
E. O. Vorontsova

Researches of the possibilities of creating a lunar navigation and communication system have revealed features of the sun's illumination of near-lunar orbits: the annual passage of orbits through a long cycle of about 55 days, containing shadow sections of the orbit from the Moon and a pause of up to 185 days with possible overlays of penumbra and shadow sections of the orbit from the Earth. At the same time, the penumbra and shadow zones from the Earth near the Moon have significant differences in size and can cover the entire orbital grouping of the lunar navigation and communication system. As a result, the problem arises of calculating the energy resources of a circumlunar satellite for passing long-duration shadow zones and maintaining the spacecraft's thermal regime for the period of passing the shadow section of the orbit from the Earth. The energy balance of the spacecraft is modeled for various modes of its operation during the passage of long-duration shadow zones: regular, duty, storage. It is proposed to use blinds to regulate the heat radiation from the spacecraft radiators when passing the shadow sections of the orbit in the considered modes. To reduce the cost of spacecraft mass it is recommended to switch the spacecraft to storage mode, which reduces power consumption in comparison with standby mode. The efficiency of the proposed scheme for passing the shadow zones of the lunar navigation and communication system spacecraft was evaluated for three spacecraft sizes according to the criterion – the minimum amount of mass spent on increasing the energy intensity of the battery and installing blinds.


2019 ◽  
Vol 11 (13) ◽  
pp. 1509
Author(s):  
Tamás Várnai ◽  
Charles Gatebe ◽  
Ritesh Gautam ◽  
Rajesh Poudyal ◽  
Wenying Su

This study examines the angular distribution of scattered solar radiation associated with wildfire smoke aerosols observed over boreal forests in Canada during the ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) campaign. First, it estimates smoke radiative parameters (550 nm optical depth of 3.9 and single scattering albedo of 0.90) using quasi-simultaneous multiangular and multispectral airborne measurements by the Cloud Absorption Radiometer (CAR). Next, the paper estimates the broadband top-of-atmosphere radiances that a satellite instrument such as the Clouds and the Earth’s Radiant Energy System (CERES) could have observed, given the narrowband CAR measurements made from an aircraft circling about a kilometer above the smoke layer. This estimation includes both an atmospheric correction that accounts for the atmosphere above the aircraft and a narrowband-to-broadband conversion. The angular distribution of estimated radiances is found to be substantially different than the angular model used in the operational data processing of CERES observations over the same area. This is because the CERES model is a monthly average model that was constructed using observations taken under smoke-free conditions. Finally, a sensitivity analysis shows that the estimated angular distribution remains accurate for a fairly wide range of smoke and underlying surface parameters. Overall, results from this work suggest that airborne CAR measurements can bring some substantial improvements in the accuracy of satellite-based radiative flux estimates.


1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


1962 ◽  
Vol 14 ◽  
pp. 133-148 ◽  
Author(s):  
Harold C. Urey

During the last 10 years, the writer has presented evidence indicating that the Moon was captured by the Earth and that the large collisions with its surface occurred within a surprisingly short period of time. These observations have been a continuous preoccupation during the past years and some explanation that seemed physically possible and reasonably probable has been sought.


1962 ◽  
Vol 14 ◽  
pp. 39-44
Author(s):  
A. V. Markov

Notwithstanding the fact that a number of defects and distortions, introduced in transmission of the images of the latter to the Earth, mar the negatives of the reverse side of the Moon, indirectly obtained on 7 October 1959 by the automatic interplanetary station (AIS), it was possible to use the photometric measurements of the secondary (terrestrial) positives of the reverse side of the Moon in the experiment of the first comparison of the characteristics of the surfaces of the visible and invisible hemispheres of the Moon.


Author(s):  
Madel Carmen Muñoz Rodríguez ◽  
Juan Manuel de Faramiñán Gilbert
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document