scholarly journals Landscape Structure and Seasonality: Effects on Wildlife Species Richness and Occupancy in a Fragmented Dry Forest in Coastal Ecuador

2021 ◽  
Vol 13 (18) ◽  
pp. 3762
Author(s):  
Xavier Haro-Carrión ◽  
Jon Johnston ◽  
Maria Juliana Bedoya-Durán

Despite high fragmentation and deforestation, little is known about wildlife species richness and occurrence probabilities in tropical dry forest (TDF) landscapes. To fill this gap in knowledge, we used a Sentinel-2-derived land-cover map, Normalized Difference Vegetation Index (NDVI) data and a multi-species occupancy model to correct for detectability to assess the effect of landscape characteristics on medium and large mammal occurrence and richness in three TDF areas that differ in disturbance and seasonality in Ecuador. We recorded 15 species of medium and large mammals, distributed in 12 families; 1 species is critically Endangered, and 2 are Near-Threatened. The results indicate that species occupancy is related to low forest cover and high vegetation seasonality (i.e., high difference in NDVI between the wet and dry seasons). We believe that the apparent negative effect of forest cover is an indicator of species tolerance for disturbance. The three sampling areas varied from 98% to 40% forest cover, yet species richness and occupancy were not significantly different among them. Vegetation seasonality indicates that more seasonal forests (i.e., those where most tree species lose their leaves during the dry season) tend to have higher mammal species occupancy compared to less seasonal, semi-deciduous forests. Overall, occupancy did not vary between the dry and wet seasons, but species-specific data indicate that some species exhibit higher occupancy during the wet season. This research offers a good understanding of mammal species’ responses to habitat disturbance and fragmentation in TDFs and provides insights to promote their conservation.

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 817
Author(s):  
Jesús Julio Camarero ◽  
Michele Colangelo ◽  
Antonio Gazol ◽  
Manuel Pizarro ◽  
Cristina Valeriano ◽  
...  

Windstorms are forest disturbances which generate canopy gaps. However, their effects on Mediterranean forests are understudied. To fill that research gap, changes in tree, cover, growth and soil features in Pinus halepensis and Pinus sylvestris plantations affected by windthrows were quantified. In each plantation, trees and soils in closed-canopy stands and gaps created by the windthrow were sampled. Changes in tree cover and radial growth were assessed by using the Normalized Difference Vegetation Index (NDVI) and dendrochronology, respectively. Soil features including texture, nutrients concentration and soil microbial community structure were also analyzed. Windthrows reduced tree cover and enhanced growth, particularly in the P. halepensis site, which was probably more severely impacted. Soil characteristics were also more altered by the windthrow in this site: the clay percentage increased in gaps, whereas K and Mg concentrations decreased. The biomass of Gram positive bacteria and actinomycetes increased in gaps, but the biomass of Gram negative bacteria and fungi decreased. Soil gaps became less fertile and dominated by bacteria after the windthrow in the P. halepensis site. We emphasize the relevance of considering post-disturbance time recovery and disturbance intensity to assess forest resilience within a multi-scale approach.


2021 ◽  
pp. 1-10
Author(s):  
Carlos M. Delgado-Martínez ◽  
Fredy Alvarado ◽  
Melanie Kolb ◽  
Eduardo Mendoza

Abstract Great attention has been drawn to the impacts of habitat deforestation and fragmentation on wildlife species richness. In contrast, much less attention has been paid to assessing the impacts of chronic anthropogenic disturbance on wildlife species composition and behaviour. We focused on natural small rock pools (sartenejas), which concentrate vertebrate activity due to habitat’s water limitation, to assess the impact of chronic anthropogenic disturbance on the species richness, diversity, composition, and behaviour of medium and large-sized birds and mammals in the highly biodiverse forests of Calakmul, southern Mexico. Camera trapping records of fauna using sartenejas within and outside the Calakmul Biosphere Reserve (CBR) showed that there were no effects on species richness, but contrasts emerged when comparing species diversity, composition, and behaviour. These effects differed between birds and mammals and between species: (1) bird diversity was greater outside the CBR, but mammal diversity was greater within and (2) the daily activity patterns of birds differed slightly within and outside the CBR but strongly contrasted in mammals. Our study highlights that even in areas supporting extensive forest cover, small-scale chronic anthropogenic disturbances can have pervasive negative effects on wildlife and that these effects contrast between animal groups.


Author(s):  
S. A. Rahaman ◽  
S. Aruchamy ◽  
K. Balasubramani ◽  
R. Jegankumar

Nowadays land use/ land cover in mountain landscape is in critical condition; it leads to high risky and uncertain environments. These areas are facing multiple stresses including degradation of land resources; vagaries of climate and depletion of water resources continuously affect land use practices and livelihoods. To understand the Land use/Land cover (Lu/Lc) changes in a semi-arid mountain landscape, Kallar watershed of Bhavani basin, in southern India has been chosen. Most of the hilly part in the study area covers with forest, plantation, orchards and vegetables and which are highly affected by severe soil erosion, landslide, frequent rainfall failures and associated drought. The foothill regions are mainly utilized for agriculture practices; due to water scarcity and meagre income, the productive agriculture lands are converted into settlement plots and wasteland. Hence, land use/land cover change deduction; a stochastic processed based method is indispensable for future prediction. For identification of land use/land cover, and vegetation changes, Landsat TM, ETM (1995, 2005) and IRS P6- LISS IV (2015) images were used. Through CAMarkov chain analysis, Lu/Lc changes in past three decades (1995, 2005, and 2015) were identified and projected for (2020 and 2025); Normalized Difference Vegetation Index (NDVI) were used to find the vegetation changes. The result shows that, maximum changes occur in the plantation and slight changes found in forest cover in the hilly terrain. In foothill areas, agriculture lands were decreased while wastelands and settlement plots were increased. The outcome of the results helps to farmer and policy makers to draw optimal lands use planning and better management strategies for sustainable development of natural resources.


2021 ◽  
Vol 3 ◽  
Author(s):  
Omar Gutierrez-Cori ◽  
Jhan Carlo Espinoza ◽  
Laurent Z. X. Li ◽  
Sly Wongchuig ◽  
Paola A. Arias ◽  
...  

The southern Amazonia is undergoing a major biophysical transition, involving changes in land use and regional climate. This study provides new insights on the relationship between hydroclimatic variables and vegetation conditions in the upper Madeira Basin (~1 × 106 km2). Vegetative dynamics are characterised using the normalized difference vegetation index (NDVI) while hydroclimatic variability is analysed using satellite-based precipitation, observed river discharge, satellite measurements of terrestrial water storage (TWS) and downward shortwave radiation (DSR). We show that the vegetation in this region varies from energy-limited to water-limited throughout the year. During the peak of the wet season (January-February), rainfall, discharge and TWS are negatively correlated with NDVI in February-April (r = −0.48 to −0.65; p < 0.05). In addition, DSR is positively correlated with NDVI (r = 0.47–0.54; p < 0.05), suggesting that the vegetation is mainly energy-limited during this period. Outside this period, these correlations are positive for rainfall, discharge and TWS (r = 0.55–0.88; p < 0.05), and negative for DSR (r = −0.47 to −0.54; p < 0.05), suggesting that vegetation depends mainly on water availability, particularly during the vegetation dry season (VDS; late June to late October). Accordantly, the total rainfall during the dry season explains around 80% of the VDS NDVI interannual variance. Considering the predominant land cover types, differences in the hydroclimate-NDVI relationship are observed. Evergreen forests (531,350 km2) remain energy-limited during the beginning of the dry season, but they become water-limited at the end of the VDS. In savannas and flooded savannas (162,850 km2), water dependence occurs months before the onset of the VDS. These differences are more evident during extreme drought years (2007, 2010, and 2011), where regional impacts on NDVI were stronger in savannas and flooded savannas (55% of the entire surface of savannas) than in evergreen forests (40%). A spatial analysis reveals that two specific areas do not show significant hydroclimatic-NDVI correlations during the dry season: (i) the eastern flank of the Andes, characterised by very wet conditions, therefore the vegetation is not water-limited, and (ii) recent deforested areas (~42,500 km2) that break the natural response in the hydroclimate-vegetation system. These findings are particularly relevant given the increasing rates of deforestation in this region.


2019 ◽  
Vol 8 (3) ◽  
pp. 6406-6411

The purpose of calculation and compiling the Land Cover Quality Index (LCQI) is to evaluate the value of natural and environmental resources based on land cover conditions in an administrative region such as city, regency and province in Indonesia referring to the Regulation Director General of Pollution Control and Environmental Damage Number P.1/PPKL/PKLA.4/2018. The analytical method used in the calculation of the Normalized Difference Vegetation Index (NDVI), the Maximum likelihood classification approach, and the preparation of LCQI calculation methods based on 1) sufficiency area (forest region) and forest cover at minimal 30% on rivers and islands; 2) Ability and suitability of land minimal 25%; and 3) a link with the direction of land use in urban areas of at minimal 30%. The results showed the vegetation density index value in Pariaman city was classified as a good category with a value of 0.474903 μm, the results of a land cover classification in Pariaman City with the largest region are found in mixed gardens land of 2,736.57 ha or 37%. Whereas the smallest region is found in cypress vegetation land as a greenbelt at the coastal border 12.06 ha or 0,16%. and the results of the LCQI calculation indicate the LCQI value in 2019 (24,06) which is in the alert classification (<50). The increase in land cover outside the forest region is mainly directed at increasing green open space because Pariaman City does not have natural forest which are vulnerable to changes in land cover because of its high population density


2021 ◽  
Vol 22 (3) ◽  
Author(s):  
Adisti Permatasari Putri Hartoyo ◽  
ARZYANA SUNKAR ◽  
RAHMATULLOH RAMADANI ◽  
SYAHLAN FALUTHI ◽  
SYAFITRI HIDAYATI

Abstract. Hartoyo APP, Sunkar A, Ramadani R, Faluthi S, Hidayati S. 2021. Normalized Difference Vegetation Index (NDVI) analysis for vegetation cover in Leuser Ecosystem area, Sumatra, Indonesia. Biodiversitas 22: 1160-1171. About 2 Mha of 24.3 Mha degraded area in Indonesia is inside conservation area. The Leuser Ecosystem Area (LEA) is the largest conservation area in Malesian forest that plays essential role in biodiversity and ecosystem services conservation efforts. It is the last habitat on earth where Sumatran tigers, elephants, orangutans, and rhinoceros are found together. However, LEA faces many threats, such as infrastructure development, and industrial palm oil plantation. Additionally, vegetation cover data as an approach to monitor forest cover changes in LEA is still lacking and baseline data regarding composition, structure as well as vegetation diversity in LEA is very limited. The objectives of this study were to analyze vegetation cover using Normalized Difference Vegetation Index (NDVI) in LEA and its relation to agroforestry structure, composition and diversity in Agusen Village, Gayo Lues District and Alur Durin Village, East Aceh District, Aceh Province belonging to LEA. Based on the NDVI analysis, the largest area in LEA belonged to class 5, meaning that the most area in LEA was dominated by high dense vegetation (1,870,116.40 ha). The average accuracy and standard error of NDVI analysis were 83.33% and 2.62. LEA is an effective buffer for maintaining forest ecosystems and increasing the local communities' welfare through agroforestry system. Agroforestry structures in agroforestry practices, both in Agusen Village and Alur Durin Village did not reflect reverse-J curve, meaning that enrichment planting for increasing numbers of individual and species was necessary. Management of agroforestry system depends on the landowners or managers and their selection of shade tree species with high economic value with market demand such as C. arabica, T. cacao with A. moluccanus, L. leucocephala, H. brasiliensis, D. zibethinus, etc. Trees that produce non-timber products are also an alternative way for conservation strategy and sustainable utilization.


Author(s):  
Nanik Suryo Haryani ◽  
Sayidah Sulma ◽  
Junita Monika Pasaribu

The solid form of oil heavy metal waste is  known as acid sludge. The aim of this research is to exercise the correlation between acid sludge concentration in soil and NDVI value, and further studying the Normalized Difference Vegetation Index (NDVI) anomaly by multi-temporal Landsat satellite images. The implemented method is NDVI.  In this research, NDVI is analyzed using the  remote sensing data  on dry season and wet season.  Between 1997 to 2012, NDVI value in dry season  is around – 0.007 (July 2001) to 0.386 (May 1997), meanwhile in wet season  NDVI value is around – 0.005 (November 2006) to 0.381 (December 1995).  The high NDVI value shows the leaf health or  thickness, where the low NDVI indicates the vegetation stress and rareness which can be concluded as the evidence of contamination. The rehabilitation has been executed in the acid sludge contaminated location, where the high value of NDVI indicates the successfull land rehabilitation effort.


2021 ◽  
Vol 17 (2) ◽  
pp. 105-119
Author(s):  
Ferat Krasniqi ◽  
Géza Király

This research aimed to investigate the changes in forest cover, utilizing Sentinel-2A imagery data. Annual results of deforestation, non-forest, and forest area in the Municipality of Zubin Potok (Kosovo) between 2016 and 2017 were presented and analyzed by applying the image difference change detection method on a Normalized Difference Vegetation Index (NDVI) product derived for both years. The study reveals that forest coverage in this municipality has changed due to human activity (harvested and burnt forests). The footprint of changes was evidenced by using Sentinel 2A band combinations and very high resolution (VHR) images available in Google Earth (GE). From the overall forest-covered area of 24,873.61 hectares, the detected changes during the annual period are as follows: 24,423.57 ha or 98.19 % is mapped as forest, 113.75 hectares or 0.46 % as non-forest, and 336.77 or 1.35 % of the area forest is mapped as deforestation. These results can be used to identify human-made deforestation and to develop monitoring forest plans for the coming years.


2022 ◽  
Author(s):  
Fredrick Lala ◽  
Patrick I. Chiyo ◽  
Patrick Omondi ◽  
Benson Okita-Ouma ◽  
Erustus Kanga ◽  
...  

Abstract Rail and road infrastructure is essential for economic growth and development but can cause a gradual loss in biodiversity and degradation of ecosystem function and services. We assessed influence of underpass dimensions, fencing, proximity to water and roads, Normalized Difference Vegetation Index (NDVI), presence of other species and livestock on underpass use by large and medium-sized mammals. Results revealed hyenas and leopards used the underpasses more than expected whereas giraffes and antelopes used the underpasses less than expected. Generalized linear mixed effects models (GLMMs) revealed that underpass height influenced their use by wildlife, with several species preferring to use taller underpasses. Electric fencing increased underpass use by funneling species towards underpasses, except for elephants and black-backed jackal for which it reduced underpass passage. GLMMs also revealed that the use of underpasses by livestock reduced the probability of their use by nearly 50% of wildlife species. Carnivore species were more likely to cross underpasses used by their prey. Buffalo, livestock, and hyenas used underpasses with higher NDVI and near water sources while baboons, dik-diks and antelope avoided underpasses with high NDVI. The findings suggest a need for diverse, and comprehensive approach for mitigating the negative impacts of rail on African wildlife.


Sign in / Sign up

Export Citation Format

Share Document