scholarly journals Influence of Varying Solar Zenith Angles on Land Surface Phenology Derived from Vegetation Indices: A Case Study in the Harvard Forest

2021 ◽  
Vol 13 (20) ◽  
pp. 4126
Author(s):  
Yang Li ◽  
Ziti Jiao ◽  
Kaiguang Zhao ◽  
Yadong Dong ◽  
Yuyu Zhou ◽  
...  

Vegetation indices are widely used to derive land surface phenology (LSP). However, due to inconsistent illumination geometries, reflectance varies with solar zenith angles (SZA), which in turn affects the vegetation indices, and thus the derived LSP. To examine the SZA effect on LSP, the MODIS bidirectional reflectance distribution function (BRDF) product and a BRDF model were employed to derive LSPs under several constant SZAs (i.e., 0°, 15°, 30°, 45°, and 60°) in the Harvard Forest, Massachusetts, USA. The LSPs derived under varying SZAs from the MODIS nadir BRDF-adjusted reflectance (NBAR) and MODIS vegetation index products were used as baselines. The results show that with increasing SZA, NDVI increases but EVI decreases. The magnitude of SZA-induced NDVI/EVI changes suggests that EVI is more sensitive to varying SZAs than NDVI. NDVI and EVI are comparable in deriving the start of season (SOS), but EVI is more accurate when deriving the end of season (EOS). Specifically, NDVI/EVI-derived SOSs are relatively close to those derived from ground measurements, with an absolute mean difference of 8.01 days for NDVI-derived SOSs and 9.07 days for EVI-derived SOSs over ten years. However, a considerable lag exists for EOSs derived from vegetation indices, especially from the NDVI time series, with an absolute mean difference of 14.67 days relative to that derived from ground measurements. The SOSs derived from NDVI time series are generally earlier, while those from EVI time series are delayed. In contrast, the EOSs derived from NDVI time series are delayed; those derived from the simulated EVI time series under a fixed illumination geometry are also delayed, but those derived from the products with varying illumination geometries (i.e., MODIS NBAR product and MODIS vegetation index product) are advanced. LSPs derived from varying illumination geometries could lead to a difference spanning from a few days to a month in this case study, which highlights the importance of normalizing the illumination geometry when deriving LSP from NDVI/EVI time series.

2021 ◽  
Vol 13 (11) ◽  
pp. 2060
Author(s):  
Trylee Nyasha Matongera ◽  
Onisimo Mutanga ◽  
Mbulisi Sibanda ◽  
John Odindi

Land surface phenology (LSP) has been extensively explored from global archives of satellite observations to track and monitor the seasonality of rangeland ecosystems in response to climate change. Long term monitoring of LSP provides large potential for the evaluation of interactions and feedbacks between climate and vegetation. With a special focus on the rangeland ecosystems, the paper reviews the progress, challenges and emerging opportunities in LSP while identifying possible gaps that could be explored in future. Specifically, the paper traces the evolution of satellite sensors and interrogates their properties as well as the associated indices and algorithms in estimating and monitoring LSP in productive rangelands. Findings from the literature revealed that the spectral characteristics of the early satellite sensors such as Landsat, AVHRR and MODIS played a critical role in the development of spectral vegetation indices that have been widely used in LSP applications. The normalized difference vegetation index (NDVI) pioneered LSP investigations, and most other spectral vegetation indices were primarily developed to address the weaknesses and shortcomings of the NDVI. New indices continue to be developed based on recent sensors such as Sentinel-2 that are characterized by unique spectral signatures and fine spatial resolutions, and their successful usage is catalyzed with the development of cutting-edge algorithms for modeling the LSP profiles. In this regard, the paper has documented several LSP algorithms that are designed to provide data smoothing, gap filling and LSP metrics retrieval methods in a single environment. In the future, the development of machine learning algorithms that can effectively model and characterize the phenological cycles of vegetation would help to unlock the value of LSP information in the rangeland monitoring and management process. Precisely, deep learning presents an opportunity to further develop robust software packages such as the decomposition and analysis of time series (DATimeS) with the abundance of data processing tools and techniques that can be used to better characterize the phenological cycles of vegetation in rangeland ecosystems.


2022 ◽  
Vol 114 ◽  
pp. 103804
Author(s):  
Issam Touhami ◽  
Hassane Moutahir ◽  
Dorsaf Assoul ◽  
Kaouther Bergaoui ◽  
Hamdi Aouinti ◽  
...  

2020 ◽  
Vol 12 (6) ◽  
pp. 907 ◽  
Author(s):  
Teodoro Semeraro ◽  
Andrea Luvisi ◽  
Antonio O. Lillo ◽  
Roberta Aretano ◽  
Riccardo Buccolieri ◽  
...  

Forests are important in sequestering CO2 and therefore play a significant role in climate change. However, the CO2 cycle is conditioned by drought events that alter the rate of photosynthesis, which is the principal physiological action of plants in transforming CO2 into biological energy. This study applied recurrence quantification analysis (RQA) to describe the evolution of photosynthesis-related indices to highlight disturbance alterations produced by the Atlantic Multidecadal Oscillation (AMO, years 2005 and 2010) and the El Niño-Southern Oscillation (ENSO, year 2015) in the Amazon forest. The analysis was carried out using Moderate Resolution Imaging Spectroradiometer (MODIS) images to build time series of the enhanced vegetation index (EVI), the normalized difference water index (NDWI), and the land surface temperature (LST) covering the period 2001–2018. The results did not show significant variations produced by AMO throughout the study area, while a disruption due to the global warming phase linked to the extreme ENSO event occurred, and the forest was able to recover. In addition, spatial differences in the response of the forest to the ENSO event were found. These findings show that the application of RQA to the time series of vegetation indices supports the evaluation of the forest ecosystem response to disruptive events. This approach provides information on the capacity of the forest to recover after a disruptive event and, therefore is useful to estimate the resilience of this particular ecosystem.


2019 ◽  
Vol 11 (21) ◽  
pp. 2497
Author(s):  
Laura Recuero ◽  
Javier Litago ◽  
Jorge E. Pinzón ◽  
Margarita Huesca ◽  
Maria C. Moyano ◽  
...  

Vegetation seasonality assessment through remote sensing data is crucial to understand ecosystem responses to climatic variations and human activities at large-scales. Whereas the study of the timing of phenological events showed significant advances, their recurrence patterns at different periodicities has not been widely study, especially at global scale. In this work, we describe vegetation oscillations by a novel quantitative approach based on the spectral analysis of Normalized Difference Vegetation Index (NDVI) time series. A new set of global periodicity indicators permitted to identify different seasonal patterns regarding the intra-annual cycles (the number, amplitude, and stability) and to evaluate the existence of pluri-annual cycles, even in those regions with noisy or low NDVI. Most of vegetated land surface (93.18%) showed one intra-annual cycle whereas double and triple cycles were found in 5.58% of the land surface, mainly in tropical and arid regions along with agricultural areas. In only 1.24% of the pixels, the seasonality was not statistically significant. The highest values of amplitude and stability were found at high latitudes in the northern hemisphere whereas lowest values corresponded to tropical and arid regions, with the latter showing more pluri-annual cycles. The indicator maps compiled in this work provide highly relevant and practical information to advance in assessing global vegetation dynamics in the context of global change.


Author(s):  
M. Khosravirad ◽  
M. Omid ◽  
F. Sarmadian ◽  
S. Hosseinpour

Abstract. This study aimed to evaluate the power of various vegetation indices for sugarcane yield modelling in Shoeibeyeh area in Khuzestan province of Iran. Seven indices were extracted from satellite images and were then converted to seven days' time-series via interpolation. To eliminate noise from the time-series data, all of them were reconstructed using the Savitzky-Golay algorithm. Thus seven different time-series of vegetation indices were obtained. The growth profile was drawn via averaging of NDVI time-series data and was divided into three growth intervals. Then the accumulative values of vegetation indices related to first and second periods of growth (from 2004 to 2016 extracted from time-series data) were evaluated by simple linear regression models against the average observed yields efficiency. The result showed the accumulative IAVI (γ = 1.4) vegetation index relative to first period of growth with R2 = 0.66 and RMSE = 3.78 ton/ha and the accumulative NDI vegetation index relative to second period of growth with R2 = 0.66 and RMSE = 3.79 ton/ha and the accumulative NDI vegetation index relative to sum of the first and the second growth periods with R2 = 0.78 and RMSE = 3.09 ton/ha had good agreement with sugarcane stem yield efficiency at the middle of growth and before harvesting season.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 606
Author(s):  
Bjorn-Gustaf J. Brooks ◽  
Danny C. Lee ◽  
Lars Y. Pomara ◽  
William W. Hargrove

We describe a polar coordinate transformation of vegetation index profiles which permits a broad-scale comparison of location-specific phenological variability influenced by climate, topography, land use, and other factors. We apply statistical data reduction techniques to identify fundamental dimensions of phenological variability and to classify phenological types with intuitive ecological interpretation. Remote sensing-based land surface phenology can reveal ecologically meaningful vegetational diversity and dynamics across broad landscapes. Land surface phenology is inherently complex at regional to continental scales, varying with latitude, elevation, and multiple biophysical factors. Quantifying phenological change across ecological gradients at these scales is a potentially powerful way to monitor ecological development, disturbance, and diversity. Polar coordinate transformation was applied to Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) time series spanning 2000-2018 across North America. In a first step, 46 NDVI values per year were reduced to 11 intuitive annual metrics, such as the midpoint of the growing season and degree of seasonality, measured relative to location-specific annual phenological cycles. Second, factor analysis further reduced these metrics to fundamental phenology dimensions corresponding to annual timing, productivity, and seasonality. The factor analysis explained over 95% of the variability in the metrics and represented a more than ten-fold reduction in data volume from the original time series. In a final step, phenological classes (‘phenoclasses’) based on the statistical clustering of the factor data, were computed to describe the phenological state of each pixel during each year, which facilitated the tracking of year-to-year dynamics. Collectively the phenology metrics, factors, and phenoclasses provide a system for characterizing land surface phenology and for monitoring phenological change that is indicative of ecological gradients, development, disturbance, and other aspects of landscape-scale diversity and dynamics.


2021 ◽  
Vol 13 (22) ◽  
pp. 4522
Author(s):  
Yupeng Kang ◽  
Xinli Hu ◽  
Qingyan Meng ◽  
Youfeng Zou ◽  
Linlin Zhang ◽  
...  

Time series of vegetation indices can be utilized to capture crop phenology information, and have been widely used in land cover and crop classification, phenological feature extraction, and planting structure monitoring. This is of great significance for guiding agricultural production and formulating agricultural policies. According to the characteristics of the GF-6 satellite’s newly-added red edge bands, wide field view and high-frequency imaging, the time series of vegetation indices about multi-temporal GF-6 WFV data are used for the study of land cover and crop classification. In this study, eight time steps of GF-6 WFV data were selected from March to October 2019 in Hengshui City. The normalized difference vegetation index (NDVI) time series and 10 different red edge spectral indices time series were constructed. Then, based on principal component analysis (PCA), using two feature selection and evaluation methods, stepwise discriminant analysis (SDA) and random forest (RF), the red edge vegetation index of normalized difference red edge (NDRE) was selected. Seven different lengths of NDVI, NDRE and NDVI&NDRE time series were reconstructed by the Savizky-Golay (S-G) smoothing algorithm. Finally, an RF classification algorithm was used to analyze the influence of time series length and red edge indices features on land cover and crop classification, and the planting structure and distribution of crops in the study area were obtained. The results show that: (1) Compared with the NDRE red edge time series, the NDVI time series is more conducive to the improvement of the overall classification accuracy of crops, and NDRE can assist NDVI in improving the crop classification accuracy; (2) With the shortening of NDVI and NDRE time series, the accuracy of crop classification is gradually decreased, and the decline is gradually accelerated; and (3) Through the combination of the NDVI and NDRE time series, the accuracy of crop classification with different time series lengths can be improved compared with the single NDVI time series, which is conducive to improving the classification accuracy and timeliness of crops. This study has fully tapped the application potential of the new red edge bands of GF-6 WFV time series data, which can provide references for crop identification and classification of time series data such as NDVI and red edge vegetation index of different lengths. At the same time, it promotes the application of optical satellite data with red edge bands in the field of agricultural remote sensing.


Sign in / Sign up

Export Citation Format

Share Document