scholarly journals Monitoring Rainfed Alfalfa Growth in Semiarid Agrosystems Using Sentinel-2 Imagery

2021 ◽  
Vol 13 (22) ◽  
pp. 4719
Author(s):  
Andrés Echeverría ◽  
Alejandro Urmeneta ◽  
María González-Audícana ◽  
Esther M González

The aim of this study was to assess the utility of Sentinel-2 images in the monitoring of the fractional vegetation cover (FVC) of rainfed alfalfa in semiarid areas such as that of Bardenas Reales in Spain. FVC was sampled in situ using 1 m2 surfaces at 172 points inside 18 alfalfa fields from late spring to early summer in 2017 and 2018. Different vegetation indices derived from a series of Sentinel-2 images were calculated and were then correlated with the FVC measurements at the pixel and parcel levels using different types of equations. The results indicate that the normalized difference vegetation index (NDVI) and FVC were highly correlated at the parcel level (R2 = 0.712), whereas the correlation at the pixel level remained moderate across each of the years studied. Based on the findings, another 29 alfalfa plots (28 rainfed; 1 irrigated) were remotely monitored operationally for 3 years (2017–2019), revealing that location and weather conditions were strong determinants of alfalfa growth in Bardenas Reales. The results of this study indicate that Sentinel-2 imagery is a suitable tool for monitoring rainfed alfalfa pastures in semiarid areas, thus increasing the potential success of pasture management.

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1486
Author(s):  
Chris Cavalaris ◽  
Sofia Megoudi ◽  
Maria Maxouri ◽  
Konstantinos Anatolitis ◽  
Marios Sifakis ◽  
...  

In this study, a modelling approach for the estimation/prediction of wheat yield based on Sentinel-2 data is presented. Model development was accomplished through a two-step process: firstly, the capacity of Sentinel-2 vegetation indices (VIs) to follow plant ecophysiological parameters was established through measurements in a pilot field and secondly, the results of the first step were extended/evaluated in 31 fields, during two growing periods, to increase the applicability range and robustness of the models. Modelling results were examined against yield data collected by a combine harvester equipped with a yield-monitoring system. Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were examined as plant signals and combined with Normalized Difference Water Index (NDWI) and/or Normalized Multiband Drought Index (NMDI) during the growth period or before sowing, as water and soil signals, respectively. The best performing model involved the EVI integral for the 20 April–31 May period as a plant signal and NMDI on 29 April and before sowing as water and soil signals, respectively (R2 = 0.629, RMSE = 538). However, model versions with a single date and maximum seasonal VIs values as a plant signal, performed almost equally well. Since the maximum seasonal VIs values occurred during the last ten days of April, these model versions are suitable for yield prediction.


2020 ◽  
Vol 12 (17) ◽  
pp. 2708 ◽  
Author(s):  
Qi Wang ◽  
Jiancheng Li ◽  
Taoyong Jin ◽  
Xin Chang ◽  
Yongchao Zhu ◽  
...  

Soil moisture is an important variable in ecological, hydrological, and meteorological studies. An effective method for improving the accuracy of soil moisture retrieval is the mutual supplementation of multi-source data. The sensor configuration and band settings of different optical sensors lead to differences in band reflectivity in the inter-data, further resulting in the differences between vegetation indices. The combination of synthetic aperture radar (SAR) data with multi-source optical data has been widely used for soil moisture retrieval. However, the influence of vegetation indices derived from different sources of optical data on retrieval accuracy has not been comparatively analyzed thus far. Therefore, the suitability of vegetation parameters derived from different sources of optical data for accurate soil moisture retrieval requires further investigation. In this study, vegetation indices derived from GF-1, Landsat-8, and Sentinel-2 were compared. Based on Sentinel-1 SAR and three optical data, combined with the water cloud model (WCM) and the advanced integral equation model (AIEM), the accuracy of soil moisture retrieval was investigated. The results indicate that, Sentinel-2 data were more sensitive to vegetation characteristics and had a stronger capability for vegetation signal detection. The ranking of normalized difference vegetation index (NDVI) values from the three sensors was as follows: the largest was in Sentinel-2, followed by Landsat-8, and the value of GF-1 was the smallest. The normalized difference water index (NDWI) value of Landsat-8 was larger than that of Sentinel-2. With reference to the relative components in the WCM model, the contribution of vegetation scattering exceeded that of soil scattering within a vegetation index range of approximately 0.55–0.6 in NDVI-based models and all ranges in NDWI1-based models. The threshold value of NDWI2 for calculating vegetation water content (VWC) was approximately an NDVI value of 0.4–0.55. In the soil moisture retrieval, Sentinel-2 data achieved higher accuracy than data from the other sources and thus was more suitable for the study for combination with SAR in soil moisture retrieval. Furthermore, compared with NDVI, higher accuracy of soil moisture could be retrieved by using NDWI1 (R2 = 0.623, RMSE = 4.73%). This study provides a reference for the selection of optical data for combination with SAR in soil moisture retrieval.


2005 ◽  
Vol 62 (3) ◽  
pp. 199-207 ◽  
Author(s):  
Maurício dos Santos Simões ◽  
Jansle Vieira Rocha ◽  
Rubens Augusto Camargo Lamparelli

Spectral information is well related with agronomic variables and can be used in crop monitoring and yield forecasting. This paper describes a multitemporal research with the sugarcane variety SP80-1842, studying its spectral behavior using field spectroscopy and its relationship with agronomic parameters such as leaf area index (LAI), number of stalks per meter (NPM), yield (TSS) and total biomass (BMT). A commercial sugarcane field in Araras/SP/Brazil was monitored for two seasons. Radiometric data and agronomic characterization were gathered in 9 field campaigns. Spectral vegetation indices had similar patterns in both seasons and adjusted to agronomic parameters. Band 4 (B4), Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), and Soil Adjusted Vegetation Index (SAVI) increased their values until the end of the vegetative stage, around 240 days after harvest (DAC). After that stage, B4 reflectance and NDVI values began to stabilize and decrease because the crop reached ripening and senescence stages. Band 3 (B3) and RVI presented decreased values since the beginning of the cycle, followed by a stabilization stage. Later these values had a slight increase caused by the lower amount of green vegetation. Spectral variables B3, RVI, NDVI, and SAVI were highly correlated (above 0.79) with LAI, TSS, and BMT, and about 0.50 with NPM. The best regression models were verified for RVI, LAI, and NPM, which explained 0.97 of TSS variation and 0.99 of BMT variation.


2021 ◽  
Vol 3 (1) ◽  
pp. 118-137
Author(s):  
Tom Hardy ◽  
Lammert Kooistra ◽  
Marston Domingues Franceschini ◽  
Sebastiaan Richter ◽  
Erwin Vonk ◽  
...  

Grasslands are important for their ecological values and for agricultural activities such as livestock production worldwide. Efficient grassland management is vital to these values and activities, and remote sensing technologies are increasingly being used to characterize the spatiotemporal variation of grasslands to support those management practices. For this study, Sentinel-2 satellite imagery was used as an input to develop an open-source and automated monitoring system (Sen2Grass) to gain field-specific grassland information on the national and regional level for any given time range as of January 2016. This system was implemented in a cloud-computing platform (StellaSpark Nexus) designed to process large geospatial data streams from a variety of sources and was tested for a number of parcels from the Haus Riswick experimental farm in Germany. Despite outliers due to fluctuating weather conditions, vegetation index time series suggested four distinct growing cycles per growing season. Established relationships between vegetation indices and grassland yield showed poor to moderate positive trends, implying that vegetation indices could be a potential predictor for grassland biomass and chlorophyll content. However, the inclusion of larger and additional datasets such as Sentinel-1 imagery could be beneficial to developing more robust prediction models and for automatic detection of mowing events for grasslands.


Author(s):  
Ankita P. Kamble ◽  
A. A. Atre ◽  
Payal A. Mahadule ◽  
C. B. Pande ◽  
N. S. Kute ◽  
...  

Pests and diseases cause major harm during crop development. Also plant stress affects crop quality and quantity. Recent developments in high resolution remotely sensed data has seen a great potential in mapping cropland areas infected by pests and diseases, as well as potential vulnerable areas over expansive areas. Crop health monitoring in this study was carried out using remote sensing techniques. The present study was carried out in MPKV, Rahuri, Ahmednagar District, Maharashtra. Vegetation indices like Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) were used to classify the crops into healthy and dead or unhealthy one. Sentinel-2 image data from October 2019 to January 2020 processed in Arc GIS 10.1 were used for this study. Vegetation is a key component of the ecosystem and plays an important role in stabilizing the global environment. The result showed that the average vegetation cover was decreased in the month of November and healthy vegetation was found more in month of October as compared to December and January. This shows that NDVI and SAVI indices for Sentinel-2 images can be used for crop health monitoring.


Author(s):  
Ana Navarro ◽  
João Catalão ◽  
João Calvão

In Portugal, cork oak (Quercus suber L.) stands cover 737 Mha, being the most predominant species of the montado agroforestry system, contributing for the economic, social and environmental development of the country. Cork oak decline is a known problem since the late years of the 19th century that has recently worsen. The causes of oak decline seem to be a result of slow and cumulative processes, although the role of each environmental factor is not yet established. The availability of Sentinel-2 high spatial and temporal resolution dense time series enables gradual processes monitoring. These processes can be monitored using spectral vegetation indices (VI) once their temporal dynamics are expected to be related with green biomass and photosynthetic efficiency. The Normalized Difference Vegetation Index (NDVI) is sensitive to structural canopy changes, however it tends to saturate at moderate-to-dense canopies. Modified VI have been proposed to incorporate the reflectance in the red-edge spectral region, which is highly sensitive to chlorophyll content while largely unaffected by structural properties. In this research, in-situ data on the location and vitality status of cork oak trees are used to assess the correlation between chlorophyll indices (CI) and NDVI time series trends and cork oak vitality at the tree level. Preliminary results seem to be promising since differences between healthy and unhealthy (diseased/dead) trees were observed.


Author(s):  
M. Piragnolo ◽  
G. Lusiani ◽  
F. Pirotti

Permanent pastures (PP) are defined as grasslands, which are not subjected to any tillage, but only to natural growth. They are important for local economies in the production of fodder and pastures (Ali et al. 2016). Under these definitions, a pasture is permanent when it is not under any crop-rotation, and its production is related to only irrigation, fertilization and mowing. Subsidy payments to landowners require monitoring activities to determine which sites can be considered PP. These activities are mainly done with visual field surveys by experienced personnel or lately also using remote sensing techniques. The regional agency for SPS subsidies, the Agenzia Veneta per i Pagamenti in Agricoltura (AVEPA) takes care of monitoring and control on behalf of the Veneto Region using remote sensing techniques. The investigation integrate temporal series of Sentinel-2 imagery with RPAS. Indeed, the testing area is specific region were the agricultural land is intensively cultivated for production of hay harvesting four times every year between May and October. The study goal of this study is to monitor vegetation presence and amount using the Normalized Difference Vegetation Index (NDVI), the Soil-adjusted Vegetation Index (SAVI), the Normalized Difference Water Index (NDWI), and the Normalized Difference Built Index (NDBI). The overall objective is to define for each index a set of thresholds to define if a pasture can be classified as PP or not and recognize the mowing.


2019 ◽  
Vol 9 (24) ◽  
pp. 5314 ◽  
Author(s):  
Marica Franzini ◽  
Giulia Ronchetti ◽  
Giovanna Sona ◽  
Vittorio Casella

This paper is about the geometric and radiometric consistency of diverse and overlapping datasets acquired with the Parrot Sequoia camera. The multispectral imagery datasets were acquired above agricultural fields in Northern Italy and radiometric calibration images were taken before each flight. Processing was performed with the Pix4Dmapper suite following a single-block approach: images acquired in different flight missions were processed in as many projects, where different block orientation strategies were adopted and compared. Results were assessed in terms of geometric and radiometric consistency in the overlapping areas. The geometric consistency was evaluated in terms of point cloud distance using iterative closest point (ICP), while the radiometric consistency was analyzed by computing the differences between the reflectance maps and vegetation indices produced according to adopted processing strategies. For normalized difference vegetation index (NDVI), a comparison with Sentinel-2 was also made. This paper will present results obtained for two (out of several) overlapped blocks. The geometric consistency is good (root mean square error (RMSE) in the order of 0.1 m), except for when direct georeferencing is considered. Radiometric consistency instead presents larger problems, especially in some bands and in vegetation indices that have differences above 20%. The comparison with Sentinel-2 products shows a general overestimation of Sequoia data but with similar spatial variations (Pearson’s correlation coefficient of about 0.7, p-value < 2.2 × 10−16).


2020 ◽  
Vol 12 (4) ◽  
pp. 600 ◽  
Author(s):  
Pedro J. Gómez-Giráldez ◽  
María J. Pérez-Palazón ◽  
María J. Polo ◽  
María P. González-Dugo

Annual grasslands are an essential component of oak savanna ecosystems as the primary source of fodder for livestock and wildlife. Drought resistance adaptation has led them to complete their life cycle before serious soil and plant water deficits develop, resulting in a close link between grass phenology and soil water dynamics. In this work, these links were explored using a combination of terrestrial photography, satellite imagery and hydrological ground measurements. We obtained key phenological parameters of the grass cycle from terrestrial camera data using the Green Chromatic Coordinate (GCCc) index. These parameters were compared with those provided by time-series of vegetation indices (VI) obtained from Sentinel-2 (S2) satellites and time-series of abiotic variables, which defined the hydrology of the system. The results showed that the phenological parameters estimated by the S2 Normalized Difference Vegetation Index (NDVI) (r = 0.83, p < 0.001) and soil moisture (SM) (r = 0.75, p < 0.001) presented the best agreement with ground-derived observations compared to those provided by other vegetation indices and abiotic variables. The study of NDVI and SM dynamics, that was extended over four growing seasons (July 2015–May 2019), showed that the seasonality of both variables was highly synchronized, with the best agreements at the beginning and at the end of the dry seasons. However, stage changes were estimated first by SM, followed by NDVI, with a delay of between 3 and 10 days. These results support the use of a multi-approach method to monitor the phenology and the influence of the soil moisture dynamic under the study conditions.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 785
Author(s):  
Dimitrios Tassopoulos ◽  
Dionissios Kalivas ◽  
Rigas Giovos ◽  
Nestor Lougkos ◽  
Anastasia Priovolou

Remote sensing satellite platforms provide accurate temporal and spatial information useful in viticulture with an increasing interest in their use. This study aims to identify the possibilities of freely available and with frequent revisit time Sentinel-2 satellites, to monitor vine growth at regional scale on a vine-growing Protected Designation of Origin (PDO) zone during the growing season of the year 2019. This study aims to: (i) investigate through several Vegetation Indices (VIs) the vine growth differences across the zone and relations with topographic parameters; (ii) identify VIs that best recognize differences on subzones of different climatic conditions; (iii) explore the effectiveness of the Sentinel-2 data monitoring management applications. A total of 27 vineyards were selected for field and satellite data collection. Several VIs have been calculated per vineyard from a 20-date time series dataset. VIs showed high negative correlation with topographic parameter of elevation on the flowering stage. The analysis of variance between the VIs of the subzones showed that these regions have statistically significant differences, that most VIs can expose on the flowering and harvest stage, and only Normalized Difference Vegetation Index (NDVI) and VIs using Red-Edge bands during the veraison period. Sentinel-2 data show great effectiveness on monitoring management applications (tillage and trimming).


Sign in / Sign up

Export Citation Format

Share Document