scholarly journals Optical and Thermal Remote Sensing for Monitoring Agricultural Drought

2021 ◽  
Vol 13 (24) ◽  
pp. 5092
Author(s):  
Qiming Qin ◽  
Zihua Wu ◽  
Tianyuan Zhang ◽  
Vasit Sagan ◽  
Zhaoxu Zhang ◽  
...  

By effectively observing the land surface and obtaining farmland conditions, satellite remote sensing has played an essential role in agricultural drought monitoring over past decades. Among all remote sensing techniques, optical and thermal remote sensing have the most extended history of being utilized in drought monitoring. The primary goal of this paper is to illustrate how optical and thermal remote sensing have been and will be applied in the monitoring, assessment, and prediction of agricultural drought. We group the methods into four categories: optical, thermal, optical and thermal, and multi-source. For each category, a concise explanation is given to show the inherent mechanisms. We pay special attention to solar-induced chlorophyll fluorescence, which has great potential in early drought detection. Finally, we look at the future directions of agricultural drought monitoring, including (1) early detection; (2) spatio-temporal resolution; (3) organic combination of multi-source data; and (4) smart prediction and assessment based on deep learning and cloud computing.

2021 ◽  
Author(s):  
Trupti Satapathy ◽  
Meenu Ramadas ◽  
Jörg Dietrich

<p>Among natural hazards, droughts are known to be very complex and disastrous owing to their creeping nature and widespread impacts. Specifically, the occurrence of agricultural droughts poses a threat to the productivity and socio-economic development of countries such as India. In this study, we propose a novel framework for agricultural drought monitoring integrating the different indicators of vegetation health, crop water stress and soil moisture, that are derived from remote sensing satellite data. The drought monitoring is performed over Odisha, India, for the period 2000-2019. Soil moisture and land surface temperature datasets from GLDAS Noah Land Surface Model and surface reflectance data from MODIS (MOD09GA) are used in this study. We compared the utility of popular indices: (i) soil moisture condition index, soil moisture deficit index and soil wetness deficit index to represent the soil moisture level; (ii) temperature condition index, vegetation condition index and normalised difference water index to indicate vegetation health; (iii) short wave infrared water stress to represent crop water stress condition. Correlation analyses between these indices and the seasonal crop yields are performed, and suitable indicators are chosen. The popular entropy weight method is then used to integrate the indices and develop the proposed composite drought index. The index is then used for monitoring the agricultural drought condition over the study area in drought periods. The proposed framework for week- to month-scale monitoring have potential applications in identification of agricultural drought hotspots, analysis of trends in drought severity, and drought early warning for agricultural water management.</p>


2012 ◽  
Vol 16 (9) ◽  
pp. 3451-3460 ◽  
Author(s):  
W. T. Crow ◽  
S. V. Kumar ◽  
J. D. Bolten

Abstract. The lagged rank cross-correlation between model-derived root-zone soil moisture estimates and remotely sensed vegetation indices (VI) is examined between January 2000 and December 2010 to quantify the skill of various soil moisture models for agricultural drought monitoring. Examined modeling strategies range from a simple antecedent precipitation index to the application of modern land surface models (LSMs) based on complex water and energy balance formulations. A quasi-global evaluation of lagged VI/soil moisture cross-correlation suggests, when globally averaged across the entire annual cycle, soil moisture estimates obtained from complex LSMs provide little added skill (< 5% in relative terms) in anticipating variations in vegetation condition relative to a simplified water accounting procedure based solely on observed precipitation. However, larger amounts of added skill (5–15% in relative terms) can be identified when focusing exclusively on the extra-tropical growing season and/or utilizing soil moisture values acquired by averaging across a multi-model ensemble.


2021 ◽  
pp. 413-422
Author(s):  
Shao Li ◽  
Xia Xu

Using remote sensing data to monitor large area drought is one of the important methods of drought monitoring at present. However, the traditional remote sensing drought monitoring methods mainly focus on monitoring single drought response factors such as soil moisture or vegetation status, and the research on comprehensive multi-factor drought monitoring is limited. In order to improve the ability to resist drought events, this paper takes Henan Province of China as an example, takes multi-source remote sensing data as data sources, considers various disaster-causing factors, adopts random forest method to model, and explores the method of regional remote sensing comprehensive drought monitoring using various remote sensing data sources. Compared with neural network, classification regression tree and linear regression, the performance of random forest is more stable and tolerant to noise and outliers. In order to provide a new method for comprehensive assessment of regional drought, a comprehensive drought monitoring model was established based on multi-source remote sensing data, which comprehensively considered the drought factors such as soil water stress, vegetation growth status and meteorological precipitation profit and loss in the process of drought occurrence and development.


2021 ◽  
Author(s):  
Martin Hirschi ◽  
Bas Crezee ◽  
Sonia I. Seneviratne

&lt;p&gt;Drought events cause multiple impacts on the environment, the society and the economy. Here, we analyse recent major drought events with different metrics using a common framework. The analysis is based on current reanalysis (ERA5, ERA5-Land, MERRA-2) and merged remote-sensing products (ESA-CCI soil moisture, gridded satellite soil moisture from the Copernicus Climate Data Store), focusing on soil moisture (or agricultural) drought. The events are characterised by their severity, magnitude, duration and spatial extent, which are calculated from standardised daily anomalies of surface and root-zone soil moisture. We investigate the ability of the different products to represent the droughts and set the different events in context to each other. The considered products also offer opportunities for drought monitoring since they are available in near-real time.&lt;/p&gt;&lt;p&gt;All investigated products are able to represent the investigated drought events. Overall, ERA5 and ERA5-Land often show the strongest, and the remote-sensing products often weaker responses based on surface soil moisture. The weaker severities of the events in the remote-sensing products are both related to shorter event durations as well as less pronounced average negative standardised soil moisture anomalies, while the magnitudes (i.e., the minimum of the standardised anomalies over time) are comparable to the reanalysis products. Differing global distributions of long-term trends may explain some differences in the drought responses of the products. Also, the lower penetration depth of microwave remote sensing compared to the top layer of the involved land surface models could explain the partly weaker negative standardized soil moisture anomalies in the remote-sensing products during the investigated events. In the root zone (based on the reanalysis products), the drought events often show prolonged durations, but weaker magnitudes and smaller spatial extents.&lt;/p&gt;


2019 ◽  
Vol 11 (2) ◽  
pp. 138 ◽  
Author(s):  
Chaolei Zheng ◽  
Li Jia ◽  
Guangcheng Hu ◽  
Jing Lu

Thailand is characterized by typical tropical monsoon climate, and is suffering serious water related problems, including seasonal drought and flooding. These issues are highly related to the hydrological processes, e.g., precipitation and evapotranspiration (ET), which are helpful to understand and cope with these problems. It is critical to study the spatiotemporal pattern of ET in Thailand to support the local water resource management. In the current study, daily ET was estimated over Thailand by ETMonitor, a process-based model, with mainly satellite earth observation datasets as input. One major advantage of the ETMonitor algorithm is that it introduces the impact of soil moisture on ET by assimilating the surface soil moisture from microwave remote sensing, and it reduces the dependence on land surface temperature, as the thermal remote sensing is highly sensitive to cloud, which limits the ability to achieve spatial and temporal continuity of daily ET. The ETMonitor algorithm was further improved in current study to take advantage of thermal remote sensing. In the improved scheme, the evaporation fraction was first obtained by land surface temperature—vegetation index triangle method, which was used to estimate ET in the clear days. The soil moisture stress index (SMSI) was defined to express the constrain of soil moisture on ET, and clear sky SMSI was retrieved according to the estimated clear sky ET. Clear sky SMSI was then interpolated to cloudy days to obtain the SMSI for all sky conditions. Finally, time-series ET at daily resolution was achieved using the interpolated spatio-temporal continuous SMSI. Good agreements were found between the estimated daily ET and flux tower observations with root mean square error ranging between 1.08 and 1.58 mm d−1, which showed better accuracy than the ET product from MODerate resolution Imaging Spectroradiometer (MODIS), especially for the forest sites. Chi and Mun river basins, located in Northeast Thailand, were selected to analyze the spatial pattern of ET. The results indicate that the ET had large fluctuation in seasonal variation, which is predominantly impacted by the monsoon climate.


Sign in / Sign up

Export Citation Format

Share Document