Characterising recent drought events using current reanalysis and remote-sensing soil moisture products within a common framework

Author(s):  
Martin Hirschi ◽  
Bas Crezee ◽  
Sonia I. Seneviratne

<p>Drought events cause multiple impacts on the environment, the society and the economy. Here, we analyse recent major drought events with different metrics using a common framework. The analysis is based on current reanalysis (ERA5, ERA5-Land, MERRA-2) and merged remote-sensing products (ESA-CCI soil moisture, gridded satellite soil moisture from the Copernicus Climate Data Store), focusing on soil moisture (or agricultural) drought. The events are characterised by their severity, magnitude, duration and spatial extent, which are calculated from standardised daily anomalies of surface and root-zone soil moisture. We investigate the ability of the different products to represent the droughts and set the different events in context to each other. The considered products also offer opportunities for drought monitoring since they are available in near-real time.</p><p>All investigated products are able to represent the investigated drought events. Overall, ERA5 and ERA5-Land often show the strongest, and the remote-sensing products often weaker responses based on surface soil moisture. The weaker severities of the events in the remote-sensing products are both related to shorter event durations as well as less pronounced average negative standardised soil moisture anomalies, while the magnitudes (i.e., the minimum of the standardised anomalies over time) are comparable to the reanalysis products. Differing global distributions of long-term trends may explain some differences in the drought responses of the products. Also, the lower penetration depth of microwave remote sensing compared to the top layer of the involved land surface models could explain the partly weaker negative standardized soil moisture anomalies in the remote-sensing products during the investigated events. In the root zone (based on the reanalysis products), the drought events often show prolonged durations, but weaker magnitudes and smaller spatial extents.</p>


2012 ◽  
Vol 16 (9) ◽  
pp. 3451-3460 ◽  
Author(s):  
W. T. Crow ◽  
S. V. Kumar ◽  
J. D. Bolten

Abstract. The lagged rank cross-correlation between model-derived root-zone soil moisture estimates and remotely sensed vegetation indices (VI) is examined between January 2000 and December 2010 to quantify the skill of various soil moisture models for agricultural drought monitoring. Examined modeling strategies range from a simple antecedent precipitation index to the application of modern land surface models (LSMs) based on complex water and energy balance formulations. A quasi-global evaluation of lagged VI/soil moisture cross-correlation suggests, when globally averaged across the entire annual cycle, soil moisture estimates obtained from complex LSMs provide little added skill (< 5% in relative terms) in anticipating variations in vegetation condition relative to a simplified water accounting procedure based solely on observed precipitation. However, larger amounts of added skill (5–15% in relative terms) can be identified when focusing exclusively on the extra-tropical growing season and/or utilizing soil moisture values acquired by averaging across a multi-model ensemble.



EDIS ◽  
2007 ◽  
Vol 2007 (17) ◽  
Author(s):  
Joaquin Casanova ◽  
Fei Yan ◽  
Mi-young Jang ◽  
Juan Fernandez ◽  
Jasmeet Judge ◽  
...  

Circular 1514, a 47-page illustrated report by Joaquin Casanova, Fei Yan, Mi-young Jang, Juan Fernandez, Jasmeet Judge, Clint Slatton, Kai-Jen Calvin Tien, Tzu-yun Lin, Orlando Lanni, and Larry Miller, presents the results of experiments using microwave remote sensing to determine root-zone soil moisture at UF/IFAS PSREU. Published by the UF Department of Agricultural and Biological Engineering, May 2007. CIR1514/AE407: Field Observations During the Fifth Microwave Water and Energy Balance Experiment: from March 9 through May 26, 2006 (ufl.edu)



2012 ◽  
Vol 9 (4) ◽  
pp. 4587-4631 ◽  
Author(s):  
W. B. Anderson ◽  
B. F. Zaitchik ◽  
C. R. Hain ◽  
M. C. Anderson ◽  
M. T. Yilmaz ◽  
...  

Abstract. Drought in East Africa is a recurring phenomenon with significant humanitarian impacts. Given the steep climatic gradients, topographic contrasts, general data scarcity, and, in places, political instability that characterize the region, there is a need for spatially distributed, remotely derived monitoring systems to inform national and international drought response. At the same time, the very diversity and data scarcity that necessitate remote monitoring also make it difficult to evaluate the reliability of these systems. Here we apply a suite of remote monitoring techniques to characterize the temporal and spatial evolution of the 2010–2011 Horn of Africa drought. Diverse satellite observations allow for evaluation of meteorological, agricultural, and hydrological aspects of drought, each of which is of interest to different stakeholders. Focusing on soil moisture, we apply triple collocation analysis (TCA) to three independent methods for estimating soil moisture anomalies to characterize relative error between products and to provide a basis for objective data merging. The three soil moisture methods evaluated include microwave remote sensing using the Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) sensor, thermal remote sensing using the Atmosphere-Land Exchange Inverse (ALEXI) surface energy balance algorithm, and physically-based land surface modeling using the Noah land surface model. It was found that the three soil moisture monitoring methods yield similar drought anomaly estimates in areas characterized by extremely low or by moderate vegetation cover, particularly during the below-average 2011 long rainy season. Systematic discrepancies were found, however, in regions of moderately low vegetation cover and high vegetation cover, especially during the failed 2010 short rains. The merged, TCA-weighted soil moisture composite product takes advantage of the relative strengths of each method, as judged by the consistency of anomaly estimates across independent methods. This approach holds potential as a remote soil moisture-based drought monitoring system that is robust across the diverse climatic and ecological zones of East Africa.



2019 ◽  
Vol 11 (2) ◽  
pp. 138 ◽  
Author(s):  
Chaolei Zheng ◽  
Li Jia ◽  
Guangcheng Hu ◽  
Jing Lu

Thailand is characterized by typical tropical monsoon climate, and is suffering serious water related problems, including seasonal drought and flooding. These issues are highly related to the hydrological processes, e.g., precipitation and evapotranspiration (ET), which are helpful to understand and cope with these problems. It is critical to study the spatiotemporal pattern of ET in Thailand to support the local water resource management. In the current study, daily ET was estimated over Thailand by ETMonitor, a process-based model, with mainly satellite earth observation datasets as input. One major advantage of the ETMonitor algorithm is that it introduces the impact of soil moisture on ET by assimilating the surface soil moisture from microwave remote sensing, and it reduces the dependence on land surface temperature, as the thermal remote sensing is highly sensitive to cloud, which limits the ability to achieve spatial and temporal continuity of daily ET. The ETMonitor algorithm was further improved in current study to take advantage of thermal remote sensing. In the improved scheme, the evaporation fraction was first obtained by land surface temperature—vegetation index triangle method, which was used to estimate ET in the clear days. The soil moisture stress index (SMSI) was defined to express the constrain of soil moisture on ET, and clear sky SMSI was retrieved according to the estimated clear sky ET. Clear sky SMSI was then interpolated to cloudy days to obtain the SMSI for all sky conditions. Finally, time-series ET at daily resolution was achieved using the interpolated spatio-temporal continuous SMSI. Good agreements were found between the estimated daily ET and flux tower observations with root mean square error ranging between 1.08 and 1.58 mm d−1, which showed better accuracy than the ET product from MODerate resolution Imaging Spectroradiometer (MODIS), especially for the forest sites. Chi and Mun river basins, located in Northeast Thailand, were selected to analyze the spatial pattern of ET. The results indicate that the ET had large fluctuation in seasonal variation, which is predominantly impacted by the monsoon climate.



Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5399 ◽  
Author(s):  
Ghassem R. Asrar

A combination of multispectral visible, infra-red and microwave sensors on the constellation of international Earth-observing satellites are providing unprecedented observations for all Earth domains over multiple decades (i.e., atmosphere, land, oceans and polar regions). This Special Issue of Sensors is dedicated to papers that describe such advances in the field of Earth remote sensing and their applications to advance understanding of Earth’s planetary system and applying the resulting knowledge and information to meet the societal needs during recent decades. The papers accepted and published in this issue convey the exciting scientific and technical challenges and opportunities for remote sensing of all domains of Earth system, including terrestrial, aquatic and coastal ecosystems; bathymetry of coasts and islands; oceans and lakes; measurement of soil moisture and land surface temperature that affects both water resources and food production; and advances in use of sun-induced fluorescence (SIF) in measuring and monitoring the contribution of terrestrial vegetation in the cycling of carbon in Earth’s system. Measurements of SIF, for example, has had a profound impact on the field of terrestrial ecosystems research and modelling. The Earth Polychromatic Imaging Camera (EPIC) instrument on the Deep Space Climate Observatory (DSCVR) satellite located at the Sun–Earth Lagrange Point One, about 1.5 million miles away from Earth, is providing unique observations of the Earth’s full sun-lit disk from pole-to-pole and minute-by-minute, which overcomes a major limitation in temporal coverage of Earth by other polar-orbiting Earth-observing satellites. Active and passive microwave remote sensing instruments allow all-weather measurements and monitoring of clouds, weather phenomena, land-surface temperature and soil moisture by overcoming the presence of clouds that affect measurements by visible and infrared sensors. The use of powerful in-space lasers is allowing scientists and engineers to measure and monitor rapidly changing ice sheets in polar regions and mountain glaciers. These sensors and their measurements that are deployed on major space-based observatories and small- and micro-satellites, and the scientific knowledge they provide, are enhancing our understanding of planet Earth and development of Earth system models that are used increasingly to project future conditions due to Earth’s rapidly changing environmental conditions. Such knowledge and information are benefiting people, businesses and governments worldwide.



2014 ◽  
Vol 15 (3) ◽  
pp. 1293-1302 ◽  
Author(s):  
M. Tugrul Yilmaz ◽  
Wade T. Crow

Abstract Triple collocation analysis (TCA) enables estimation of error variances for three or more products that retrieve or estimate the same geophysical variable using mutually independent methods. Several statistical assumptions regarding the statistical nature of errors (e.g., mutual independence and orthogonality with respect to the truth) are required for TCA estimates to be unbiased. Even though soil moisture studies commonly acknowledge that these assumptions are required for an unbiased TCA, no study has specifically investigated the degree to which errors in existing soil moisture datasets conform to these assumptions. Here these assumptions are evaluated both analytically and numerically over four extensively instrumented watershed sites using soil moisture products derived from active microwave remote sensing, passive microwave remote sensing, and a land surface model. Results demonstrate that nonorthogonal and error cross-covariance terms represent a significant fraction of the total variance of these products. However, the overall impact of error cross correlation on TCA is found to be significantly larger than the impact of nonorthogonal errors. Because of the impact of cross-correlated errors, TCA error estimates generally underestimate the true random error of soil moisture products.



2017 ◽  
Author(s):  
Carmelo Cammalleri ◽  
Jürgen V. Vogt ◽  
Bernard Bisselink ◽  
Ad de Roo

Abstract. Agricultural drought events can affect large regions across the World, implying the urge for a suitable global tool for an accurate monitoring of this phenomenon. Soil moisture anomalies are considered a good metric to capture the occurrence of agricultural drought events, and they have become an important component of several operational drought monitoring systems. In the framework of the JRC Global Drought Observatory (GDO, http://edo.jrc.ec.europa.eu/gdo/) the suitability of modelled and/or satellite-derived proxy of soil moisture anomalies was investigated. In this study, three datasets have been evaluated as possible proxies of root zone soil moisture anomalies: (1) soil moisture from the Lisflood distributed hydrological model (LIS), (2) remotely sensed land surface temperature data from the MODIS satellite (LST), and (3) the combined passive/active microwave skin soil moisture dataset developed by ESA (CCI). Due to the independency of these three datasets, the Triple Collocation (TC) technique has been applied, aiming at quantifying the likely error associated to each dataset in comparison to the unknown true status of the system. TC analysis was performed on five macro-regions (namely North America, Europe, India, Southern Africa and Australia) detected as suitable for the experiment, providing insight into the mutual relationship between these datasets as well as assessment of the accuracy of each method. A clear outcome of the TC analysis is the good performance of remote sensing datasets, especially CCI, over dry regions such as Australia and Southern Africa, whereas the outputs of LIS seem to be more reliable over areas that are well monitored through meteorological ground station networks, such as North America and Europe. In a global drought monitoring system, these results can be used to design an ensemble system that exploits the advantages of each dataset.



Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2777
Author(s):  
Tao Cheng ◽  
Siyang Hong ◽  
Bensheng Huang ◽  
Jing Qiu ◽  
Bikui Zhao ◽  
...  

Drought is the costliest disaster around the world and in China as well. Northeastern China is one of China’s most important major grain producing areas. Frequent droughts have harmed the agriculture of this region and further threatened national food security. Therefore, the timely and effective monitoring of drought is extremely important. In this study, the passive microwave remote sensing soil moisture data, i.e., the SMOS soil moisture (SMOS-SM) product, was compared to several in situ meteorological indices through Pearson correlation analysis to assess the performance of SMOS-SM in monitoring drought in northeastern China. Then, maps based on SMOS-SM and in situ indices were created for July from 2010 to 2015 to identify the spatial pattern of drought distributions. Our results showed that the SMOS-SM product had relatively high correlation with in situ indices, especially SPI and SPEI values of a nine-month scale for the growing season. The drought patterns shown on maps generated from SPI-9, SPEI-9 and sc-PDSI were also successfully captured using the SMOS-SM product. We found that the SMOS-SM product effectively monitored drought patterns in northeastern China, and this capacity would be enhanced when field capacity information became available.



2020 ◽  
Author(s):  
Yanchen Bo

&lt;p&gt;High-level satellite remote sensing products of Earth surface play an irreplaceable role in global climate change, hydrological cycle modeling and water resources management, environment monitoring and assessment. Earth surface high-level remote sensing products released by NASA, ESA and other agencies are routinely derived from any single remote sensor. Due to the cloud contamination and limitations of retrieval algorithms, the remote sensing products derived from single remote senor are suspected to the incompleteness, low accuracy and less consistency in space and time. Some land surface remote sensing products, such as soil moisture products derived from passive microwave remote sensing data have too coarse spatial resolution to be applied at local scale. Fusion and downscaling is an effective way of improving the quality of satellite remote sensing products.&lt;/p&gt;&lt;p&gt;We developed a Bayesian spatio-temporal geostatistics-based framework for multiple remote sensing products fusion and downscaling. Compared to the existing methods, the presented method has 2 major advantages. The first is that the method was developed in the Bayesian paradigm, so the uncertainties of the multiple remote sensing products being fused or downscaled could be quantified and explicitly expressed in the fusion and downscaling algorithms. The second advantage is that the spatio-temporal autocorrelation is exploited in the fusion approach so that more complete products could be produced by geostatistical estimation.&lt;/p&gt;&lt;p&gt;This method has been applied to the fusion of multiple satellite AOD products, multiple satellite SST products, multiple satellite LST products and downscaling of 25 km spatial resolution soil moisture products. The results were evaluated in both spatio-temporal completeness and accuracy.&lt;/p&gt;



Sign in / Sign up

Export Citation Format

Share Document