scholarly journals Assessment of Recent Flow, and Calving Rate of the Perito Moreno Glacier Using LANDSAT and SENTINEL2 Images

2021 ◽  
Vol 14 (1) ◽  
pp. 52
Author(s):  
Daniele Bocchiola ◽  
Francesco Chirico ◽  
Andrea Soncini ◽  
Roberto Sergio Azzoni ◽  
Guglielmina Adele Diolaiuti ◽  
...  

We mapped flow velocity and calving rates of the iconic Perito Moreno Glacier (PMG), belonging to the Southern Patagonian Icefield (SPI) in the Argentinian Patagonia. We tracked PMG from 2001 to 2017, focusing mostly upon the latest images from 2016–2017. PMG delivers about ca. 106 m3 day−1 of ice in the Lago Argentino, and its front periodically reaches the Peninsula Magallanes. Therein, the PMG causes an ice-dam, clogging Brazo Rico channel, and lifting water level by about 10 m, until ice-dam failure, normally occurring in March. Here, we used 36 pairs of satellite images with a resolution of 10 m (SENTINEL2, visible, 9 pairs of images) and 15 m (LANDSAT imagery, panchromatic, 27 pairs of images) to calculate surface velocity (VS). We used Orientation Correlation technique, implemented via the ImGRAFT® TemplateMatch tool. Calving rates were then calculated with two methods, namely, (i) M1, by ice flow through the glacier front, and (ii) M2, by ice flow at 7.5 km upstream of the front minus ablation losses. Surface velocity ranged from about 4 m day−1 in the accumulation area to about 2 m day−1 in the calving front, but it is variable seasonally with maxima in the summer (December–January–February). Calving rate (CRM) ranges from 7.72 × 105 ± 32% to 8.76 × 105 ± 31% m3 day−1, in line with recent studies, also with maxima in the summer. We found slightly lower flow velocity and calving rates than previously published values, but our estimates cover a different period, and a generally large uncertainty in flow assessment suggests a recent overall stability of the glacier.

Author(s):  
X. Li ◽  
R. Li ◽  
G. Qiao ◽  
Y. Cheng ◽  
W. Ye ◽  
...  

Ice flow velocity over long time series in East Antarctica plays a vital role in estimating and predicting the mass balance of Antarctic Ice Sheet and its contribution to global sea level rise. However, there is no Antarctic ice velocity product with large space scale available showing the East Antarctic ice flow velocity pattern before the 1990s. We proposed three methods including parallax decomposition, grid-based NCC image matching, feature and gird-based image matching with constraints for estimation of surface velocity in East Antarctica based on ARGON KH-5 and LANDSAT imagery, showing the feasibility of using historical optical imagery to obtain Antarctic ice motion. Based on these previous studies, we presented a set of systematic method for developing ice surface velocity product for the entire East Antarctica from the 1960s to the 1980s in this paper.


1985 ◽  
Vol 31 (108) ◽  
pp. 99-107 ◽  
Author(s):  
N. F. Mcintyre

AbstractA comparison of data from aircraft altimetry, Landsat imagery, and radia echo-sounding has shown characteristic surface topographies associated with sheet and stream flow. The transition between the two is abrupt and occurs at a step in the subglacial topography. This marks the onset of basal sliding and high velocities caused by subglacial water; it results in crevassed amphitheatre-like basins round the head of outlet glaciers. It is also the zone of maximum driving stress beyond which values decline rapidly as velocities increase. This abrupt transition appears to be topographically controlled since basal temperatures are at the pressure-melting point well inland of the change in regime. The Marie Byrd Land ice streams exhibit qualitative differences from other ice-sheet outlets, however; the change to lower driving stresses is much more gradual and occurs several hundred kilometres inland. Such ice streams have particularly low surface slopes and appear in form and flow regime to resemble confined ice shelves rather than grounded ice. The repeated association of the transition to rapid sliding with a distinct subglacial feature implies a stabilizing effect on discharge through outlet glaciers. Acceleration of the ice is pinned to a subglacial step and propagation of high velocities inland of this feature seems improbable. Rapid ice flow through subglacial trenches may also ensure a relatively permanent trough through accentuation of the feature by erosion. This is concentrated towards the heads of outlet glaciers up-stream of the region where significant basal decoupling occurs. This may be a mechanism for the overdeepening of fjords at their inland ends and the development of very steep fjord headwalls.


2020 ◽  
Author(s):  
Lizz Ultee ◽  
Bryan Riel ◽  
Brent Minchew

<p>The rate of ice flux from the Greenland Ice Sheet to the ocean depends on the ice flow velocity through outlet glaciers. Ice flow velocity, in turn, evolves in response to multiple geographic and environmental forcings at different timescales. For example, velocity may vary daily in response to ocean tides, seasonally in response to surface air temperature, and multi-annually in response to long-term trends in climate. The satellite observations processed as part of the NASA MEaSUREs Greenland Ice Sheet Velocity Map allow us to analyse variations in ice surface velocity at multiple timescales. Here, we decompose short-term and long-term signals in time-dependent velocity fields for Greenland outlet glaciers based on the methods of Riel et al. (2018). Patterns found in short-term signals can constrain basal sliding relations and ice rheology, while the longer-term signals hint at decadal in/stability of outlet glaciers. We present example velocity time series for outlets including Sermeq Kujalleq (Jakobshavn Isbrae) and Helheim Glacier, and we highlight features indicative of dynamic drawdown or advective restabilization. Finally, we comment on the capabilities of a time series analysis software under development for glaciological applications.</p>


1985 ◽  
Vol 31 (108) ◽  
pp. 99-107 ◽  
Author(s):  
N. F. Mcintyre

AbstractA comparison of data from aircraft altimetry, Landsat imagery, and radia echo-sounding has shown characteristic surface topographies associated with sheet and stream flow. The transition between the two is abrupt and occurs at a step in the subglacial topography. This marks the onset of basal sliding and high velocities caused by subglacial water; it results in crevassed amphitheatre-like basins round the head of outlet glaciers. It is also the zone of maximum driving stress beyond which values decline rapidly as velocities increase. This abrupt transition appears to be topographically controlled since basal temperatures are at the pressure-melting point well inland of the change in regime. The Marie Byrd Land ice streams exhibit qualitative differences from other ice-sheet outlets, however; the change to lower driving stresses is much more gradual and occurs several hundred kilometres inland. Such ice streams have particularly low surface slopes and appear in form and flow regime to resemble confined ice shelves rather than grounded ice. The repeated association of the transition to rapid sliding with a distinct subglacial feature implies a stabilizing effect on discharge through outlet glaciers. Acceleration of the ice is pinned to a subglacial step and propagation of high velocities inland of this feature seems improbable. Rapid ice flow through subglacial trenches may also ensure a relatively permanent trough through accentuation of the feature by erosion. This is concentrated towards the heads of outlet glaciers up-stream of the region where significant basal decoupling occurs. This may be a mechanism for the overdeepening of fjords at their inland ends and the development of very steep fjord headwalls.


1996 ◽  
Vol 23 ◽  
pp. 21-27 ◽  
Author(s):  
W. F. Budd ◽  
R. C. Warner

A simple computer scheme developed by Budd and Smith (1985) and modified by D. Jenssen has been further developed to provide a rapid computation of steady-state balance fluxes over arbitrary ice masses, given the surface elevations and net accumulation distribution. The scheme provides a powerful diagnostic tool to examine the flux and state of balance over whole ice masses or limited regions to interpret field observations for dynamics or the state of balance.In many cases the uncertainty in the state of balance may be much less than the uncertainty in the deformation and sliding properties of the ice and so the flux and velocities derived from balance could provide a useful guide for the dynamics where direct observations are sparse.The scheme assumes that, on a horizontal scale of many ice thicknesses, the ice-flow direction is approximately down the steepest surface slope. The continuity equation is used to compute steady-state implied downslope fluxes at each grid point from integrations of the net accumulation over the area from the summits to the edges. The algorithm ensures the exact integral balance of the surface net flux over the area with flow through boundaries.Applications are demonstrated for the whole of Antarctica and for regional areas. Comparisons are made between fluxes computed from observed ice thicknesses and velocities and those computed from balance. The observed ice thicknesses can also be used to compute surface velocities from assumed column-to-surface velocity ratios. The combined fluxes from observations and balance can be used to compute rates of change of elevation with time.


1996 ◽  
Vol 23 ◽  
pp. 21-27 ◽  
Author(s):  
W. F. Budd ◽  
R. C. Warner

A simple computer scheme developed by Budd and Smith (1985) and modified by D. Jenssen has been further developed to provide a rapid computation of steady-state balance fluxes over arbitrary ice masses, given the surface elevations and net accumulation distribution. The scheme provides a powerful diagnostic tool to examine the flux and state of balance over whole ice masses or limited regions to interpret field observations for dynamics or the state of balance. In many cases the uncertainty in the state of balance may be much less than the uncertainty in the deformation and sliding properties of the ice and so the flux and velocities derived from balance could provide a useful guide for the dynamics where direct observations are sparse. The scheme assumes that, on a horizontal scale of many ice thicknesses, the ice-flow direction is approximately down the steepest surface slope. The continuity equation is used to compute steady-state implied downslope fluxes at each grid point from integrations of the net accumulation over the area from the summits to the edges. The algorithm ensures the exact integral balance of the surface net flux over the area with flow through boundaries. Applications are demonstrated for the whole of Antarctica and for regional areas. Comparisons are made between fluxes computed from observed ice thicknesses and velocities and those computed from balance. The observed ice thicknesses can also be used to compute surface velocities from assumed column-to-surface velocity ratios. The combined fluxes from observations and balance can be used to compute rates of change of elevation with time.


2008 ◽  
Vol 54 (186) ◽  
pp. 391-400 ◽  
Author(s):  
Scott Williamson ◽  
Martin Sharp ◽  
Julian Dowdeswell ◽  
Toby Benham

AbstractOptical satellite imagery was used to estimate glacier surface velocities and iceberg calving rates from Agassiz and western Grant Ice Caps, Nunavut, Canada, between 1999 and 2003. The largest mean annual surface velocities ranged from ∼400 to 700 m a−1, but velocities in the ∼100–200 m a−1 range were common. Summer velocities were up to an order of magnitude larger than annually averaged velocities. The highest velocity (∼1530 m a−1) was measured on the floating tongue of Lake Tuborg Glacier between 19 July and 19 August 2001. Calving rates from individual glaciers varied by up to a factor of two between successive years. Summer calving rates were ∼2–8 times larger than annual average rates. The average ratio of the calving flux due to terminus-volume change to that due to ice flow through the glacier terminus was ∼0.81 for the annual rates and ∼1.71 for summer rates. The estimated mean annual calving rate from Agassiz Ice Cap in the period 1999–2002 was 0.67 ± 0.15 km3 a−1, of which ∼54% emanated from Eugenie Glacier alone. This total rate is similar to a previously estimated calving rate from Devon Ice Cap.


Author(s):  
Y. Cheng ◽  
X. Li ◽  
G. Qiao ◽  
W. Ye ◽  
Y. Huang ◽  
...  

<p><strong>Abstract.</strong> Long-time serial observation of surface ice flow velocity in Antarctic is a crucial component in estimating the mass balance of Antarctic ice sheet. However, there is a lack of historical continental scale velocity maps of Antarctica before the 1990s. Historical optical images such as ARGON and Landsat images before 1990s are difficult to be used for ice flow velocity mapping, due to the fact that they are mostly not strictly geo-processed (e.g., ortho-rectified) and the image quality is lower than those of recent sensors. This paper presents a systematic framework for developing a surface velocity map of East Antarctica from 1963 to 1989 based on historical ARGON and Landsat images, followed by analysis of spatial-temporal changes of the ice flow velocity in some major glaciers, as well as the dynamic changes. The preliminary comparison with existing products suggests that the glaciers in Wilkes Land experienced an increasing trend with obvious fluctuations during the past &amp;sim;50 years, while the glaciers near Transantarctic Mountains tended to be stable or slightly fluctuating to a certain degree.</p>


Author(s):  
R. Li ◽  
X. Ma ◽  
Y. Cheng ◽  
W. Ye ◽  
S. Guo ◽  
...  

Ice flow velocity is a vital parameter for estimating the ice mass balance of glaciers in Antarctica. Especially long time serial observation of the surface velocity is of great significance to assessing the relationship between Antarctic ice materials and global climate change. However, the existing research on Antarctic ice velocity based on remote sensing data since 1970s due to the harsh climate in Antarctica. This paper presents an ice flow velocity estimating method includes image pre-processing, geometric model reconstruction, image ortho-rectification and feature matching by using ARGON images token in 1963 and Landsat images collected form 1973 to 1989.Considering the temporal-spatial distributions of ARGON images and Landsat images in Antarctica, two different methods respectively based on ortho-photos pair and Non-Ortho photos are adopted in this paper. More specifically, when there exist two stereo pairs taken in different time in the glacier region, after being ortho-rectified, the stereo pairs can be used to calculate ice flow velocity based on feature matching method. Otherwise, a parallax decomposition method that separates the effect of the terrain relief from the ice flow motion is applied when there only exists one stereo pair with a certain time interval. With this method, glacier surface velocity is available in the glacier region lacked enough stereo pairs. The methods mentioned above for estimating ice flow velocity are applied in Totten, Amery and Fimbul, etc. in eastern Antarctica. Furthermore, a 1960-80s ice flow speed map in the main glaciers of East Antarctica is produced for the first time.


Author(s):  
Marcel Escudier

This chapter is concerned primarily with the flow of a compressible fluid through stationary and moving blading, for the most part using the analysis introduced in Chapter 11. The principles of dimensional analysis are applied to determine the appropriate non-dimensional parameters to characterise the performance of a turbomachine. The analysis of incompressible flow through a linear cascade of aerofoil-like blades is followed by the analysis of compressible flow. Velocity triangles for flow relative to blades, and Euler’s turbomachinery equation, are introduced to analyse flow through a rotor. The concepts introduced are applied to the analysis of an axial-turbomachine stage comprising a stator and a rotor, which applies to either a compressor or a turbine.


Sign in / Sign up

Export Citation Format

Share Document