steady state balance
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Urs Granacher ◽  
Thomas Muehlbauer ◽  
Gerd Göstemeyer ◽  
Stefanie Gruber ◽  
Markus Gruber

Abstract Background High prevalence rates have been reported for physical inactivity, mobility limitations, and falls in older adults. Home-based exercise might be an adequate means to increase physical activity by improving health- (i.e., muscle strength) and skill-related components of physical fitness (i.e., balance), particularly in times of restricted physical activity due to pandemics. Objective The objective of this study was to examine the effects of home-based balance exercises conducted during daily tooth brushing on measures of balance and muscle strength in healthy older adults. Methods Fifty-one older adults were randomly assigned to a balance exercise group (n = 27; age: 65.1 ± 1.1 years) or a passive control group (n = 24; age: 66.2 ± 3.3 years). The intervention group conducted balance exercises over a period of eight weeks twice daily for three minutes each during their daily tooth brushing routine. Pre- and post-intervention, tests were included for the assessment of static steady-state balance (i.e., Romberg test), dynamic steady-state balance (i.e., 10-m single and dual-task walk test using a cognitive and motor interference task), proactive balance (i.e., Timed-Up-and-Go Test [TUG], Functional-Reach-Test [FRT]), and muscle strength (i.e., Chair-Rise-Test [CRT]). Results Irrespective of group, the statistical analysis revealed significant main effects for time (pre vs. post) for dual-task gait speed (p < .001, 1.12 ≤ d ≤ 2.65), TUG (p < .001, d = 1.17), FRT (p = .002, d = 0.92), and CRT (p = .002, d = 0.94) but not for single-task gait speed and for the Romberg-Test. No significant group × time interactions were found for any of the investigated variables. Conclusions The applied lifestyle balance training program conducted twice daily during tooth brushing routines appears not to be sufficient in terms of exercise dosage and difficulty level to enhance balance and muscle strength in healthy adults aged 60–72 years. Consequently, structured balance training programs using higher exercise dosages and/or more difficult balance tasks are recommended for older adults to improve balance and muscle strength.


2021 ◽  
Vol 22 (8) ◽  
pp. 4047
Author(s):  
Junping Feng ◽  
Wenyu Ma ◽  
Zongbin Ma ◽  
Zhongying Ren ◽  
Yang Zhou ◽  
...  

Vacuolar sodium/proton (Na+/H+) antiporters (NHXs) can stabilize ion contents to improve the salt tolerance of plants. Here, GhNHX3D was cloned and characterized from upland cotton (Gossypium hirsutum). Phylogenetic and sequence analyses showed that GhNHX3D belongs to the vacuolar-type NHXs. The GhNHX3D-enhanced green fluorescent protein (eGFP) fusion protein localized on the vacuolar membrane when transiently expressed in Arabidopsis protoplasts. The quantitative real-time PCR (qRT-PCR) analysis showed that GhNHX3D was induced rapidly in response to salt stress in cotton leaves, and its transcript levels increased with the aggravation of salt stress. The introduction of GhNHX3D into the salt-sensitive yeast mutant ATX3 improved its salt tolerance. Furthermore, silencing of GhNHX3D in cotton plants by virus-induced gene silencing (VIGS) increased the Na+ levels in the leaves, stems, and roots and decreased the K+ content in the roots, leading to greater salt sensitivity. Our results indicate that GhNHX3D is a member of the vacuolar NHX family and can confer salt tolerance by adjusting the steady-state balance of cellular Na+ and K+ ions.


2020 ◽  
Vol 8 (2) ◽  
pp. 113
Author(s):  
Jie Wang ◽  
Chunyan Li ◽  
Fumin Xu ◽  
Wei Huang

Exchange flows between estuaries and the coastal ocean are important for land-ocean interactions and ecosystem health. This study is aimed at resolving severe weather-induced exchange flows between the Calcasieu Lake Estuary and Gulf of Mexico. For that purpose, we use data from a long-term deployment of side-looking acoustic Doppler current profilers (ADCPs) and conductivity-temperature-depth sensors (CTDs) as well as flow velocity data from a boat operated survey. Regression between the transport measured from a boat mounted ADCP and the velocity data from a fixed side-looking ADCP is done to calculate a long-term transport along the Calcasieu Pass. Analyses have been done for the hydrodynamic response to 16 cold fronts passing the study area. Effects of six strongest cold fronts are discussed in more detail. Results have confirmed that the hydrodynamics is highly correlated with the frequent cold fronts. The highest correlation coefficient is r ~0.75 between the north wind and along channel transport. In general, winds from the southern quadrants push water into the estuary before each frontal passage; after the passage of the front, a rapid change of wind direction to the northern quadrants produces strong outward flows. A quasi-steady state balance between the wind stress and water level difference proposed in recent studies for different systems is further confirmed and discussed in this system. The quasi-steady state balance leads to a relatively high R2 value of greater than 0.8 between the modeled water level gradient and actual observed gradient. We have also applied a regression model, derived from the momentum balance requirement, for the subtidal exchange flow as a function of wind components and their squares which yield an R2 value greater than 0.7. With a confidence in the regression model, we further implement it for twelve years from 26 February 2007 to 10 April 2019. Four extreme events during this 12-year period of time are discussed–they include the Hurricane Ike (2008), Tropical Storm Lee (2011), a warm front, and a cold front. This hindcast of the exchange flows over multiple years can provide a useful tool for coastal management and research for estuarine channels where continuous observations of velocity are not always available.


Gerontology ◽  
2017 ◽  
Vol 64 (1) ◽  
pp. 74-89 ◽  
Author(s):  
Katharina Gordt ◽  
Thomas Gerhardy ◽  
Bijan Najafi ◽  
Michael Schwenk

Background: Wearable sensors (WS) can accurately measure body motion and provide interactive feedback for supporting motor learning. Objective: This review aims to summarize current evidence for the effectiveness of WS training for improving balance, gait and functional performance. Methods: A systematic literature search was performed in PubMed, Cochrane, Web of Science, and CINAHL. Randomized controlled trials (RCTs) using a WS exercise program were included. Study quality was examined by the PEDro scale. Meta-analyses were conducted to estimate the effects of WS balance training on the most frequently reported outcome parameters. Results: Eight RCTs were included (Parkinson n = 2, stroke n = 1, Parkinson/stroke n = 1, peripheral neuropathy n = 2, frail older adults n = 1, healthy older adults n = 1). The sample size ranged from n = 20 to 40. Three types of training paradigms were used: (1) static steady-state balance training, (2) dynamic steady-state balance training, which includes gait training, and (3) proactive balance training. RCTs either used one type of training paradigm (type 2: n = 1, type 3: n = 3) or combined different types of training paradigms within their intervention (type 1 and 2: n = 2; all types: n = 2). The meta-analyses revealed significant overall effects of WS training on static steady-state balance outcomes including mediolateral (eyes open: Hedges' g = 0.82, CI: 0.43-1.21; eyes closed: g = 0.57, CI: 0.14-0.99) and anterior-posterior sway (eyes open: g = 0.55, CI: 0.01-1.10; eyes closed: g = 0.44, CI: 0.02-0.86). No effects on habitual gait speed were found in the meta-analysis (g = -0.19, CI: -0.68 to 0.29). Two RCTs reported significant improvements for selected gait variables including single support time, and fast gait speed. One study identified effects on proactive balance (Alternate Step Test), but no effects were found for the Timed Up and Go test and the Berg Balance Scale. Two studies reported positive results on feasibility and usability. Only one study was performed in an unsupervised setting. Conclusion: This review provides evidence for a positive effect of WS training on static steady-state balance in studies with usual care controls and studies with conventional balance training controls. Specific gait parameters and proactive balance measures may also be improved by WS training, yet limited evidence is available. Heterogeneous training paradigms, small sample sizes, and short intervention durations limit the validity of our findings. Larger studies are required for estimating the true potential of WS technology.


2014 ◽  
Vol 22 (4) ◽  
pp. 490-498 ◽  
Author(s):  
Urs Granacher ◽  
Andre Lacroix ◽  
Katrin Roettger ◽  
Albert Gollhofer ◽  
Thomas Muehlbauer

This study investigated associations between variables of trunk muscle strength (TMS), spinal mobility, and balance in seniors. Thirty-four seniors (sex: 18 female, 16 male; age: 70 ± 4 years; activity level: 13 ± 7 hr/week) were tested for maximal isometric strength (MIS) of the trunk extensors, flexors, lateral flexors, rotators, spinal mobility, and steady-state, reactive, and proactive balance. Significant correlations were detected between all measures of TMS and static steady-state balance (r = .43−.57, p < .05). Significant correlations were observed between specific measures of TMS and dynamic steady-state balance (r = .42−.55, p < .05). No significant correlations were found between all variables of TMS and reactive/proactive balance and between all variables of spinal mobility and balance. Regression analyses revealed that TMS explains between 1–33% of total variance of the respective balance parameters. Findings indicate that TMS is related to measures of steady-state balance which may imply that TMS promoting exercises should be integrated in strength training for seniors.


2013 ◽  
Vol 10 (8) ◽  
pp. 14239-14259 ◽  
Author(s):  
E. Wurgaft ◽  
O. Shamir ◽  
A. Angert

Abstract. The 17O-excess (17Δ) of dissolved O2 has been used, for over a decade, to estimate gross O2 production (G17OP) rates in the mixed layer (ML) in many regions of the ocean. This estimate relies on a steady-state balance of O2 fluxes, which include air-sea gas exchange, photosynthesis and respiration but notably, not turbulent mixing with O2 from the thermocline. In light of recent publications, which showed that neglecting the turbulent flux may lead to inaccurate G17OP estimations, we present a simple correction for the effect of turbulent flux of O2 from the thermocline on ML G17OP. The correction is based on a turbulent-flux term between the thermocline and the ML, and use the difference between the ML 17Δ and that of a single data-point below the ML base. Using a numerical model and measured data we compared turbulence-corrected G17OP rates to those calculated without it. The corrected G17OP rates were 10–90% lower than the uncorrected rates, which implies that a large fraction of the photosynthetic O2 in the ML is actually produced in the thermocline.


2011 ◽  
Vol 76 (3) ◽  
pp. 411-416 ◽  
Author(s):  
Lyman P. Persico ◽  
Leslie D. McFadden ◽  
Jedidiah D. Frechette ◽  
Grant A. Meyer

AbstractLower slopes of the Sandia Mountains are characterized by granitic corestone topography and weathering-limited slopes with thin grusy colluvium and weakly developed soils. In contrast, thick soils with illuvial clay and pedogenic carbonate have developed below aplite outcrops. Aplite is resistant to chemical decomposition, but physically weathers to blocky clasts that enhance surface roughness and erosional resistance of colluvium, promoting accumulation of eolian fines. Thick B horizons on aplite slopes indicate limited erosion and prolonged periods of stability and soil development. Accretion of eolian material limits runoff and prevents attainment of a steady-state balance between soil production and downslope transport.


Sign in / Sign up

Export Citation Format

Share Document