scholarly journals Influence of Atmospheric Scattering on the Accuracy of Laser Altimetry of the GF-7 Satellite and Corrections

2021 ◽  
Vol 14 (1) ◽  
pp. 129
Author(s):  
Jiaqi Yao ◽  
Xinming Tang ◽  
Guoyuan Li ◽  
Jiyi Chen ◽  
Zhiqiang Zuo ◽  
...  

Satellite laser altimetry can obtain sub-meter or even centimeter-scale surface elevation data over large areas, but it is inevitably affected by scattering caused by clouds, aerosols, and other atmospheric particles. This laser ranging error caused by scattering cannot be ignored. In this study, we systematically combined existing atmospheric scattering identification technology used in satellite laser altimetry and observed that the traditional algorithm cannot effectively estimate the laser multiple scattering of the GaoFen-7 (GF-7) satellite. To solve this problem, we used data from the GF-7 satellite to analyze the importance of atmospheric scattering and propose an identification scheme for atmospheric scattering data over land and water areas. We also used a look-up table and a multi-layer perceptron (MLP) model to identify and correct atmospheric scattering, for which the availability of land and water data reached 16.67% and 26.09%, respectively. After correction using the MLP model, the availability of land and water data increased to 21% and 30%, respectively. These corrections mitigated the low identification accuracy due to atmospheric scattering, which is significant for facilitating satellite laser altimetry data processing.

2020 ◽  
Vol 49 (11) ◽  
pp. 20200234-20200234
Author(s):  
李国元 Guoyuan Li ◽  
么嘉棋 Jiaqi Yao ◽  
赵一鸣 Yiming Zhao ◽  
李正强 Zhengqiang Li ◽  
李旭 Xu Li ◽  
...  

Author(s):  
Guoyuan Li ◽  
Xinming Tang ◽  
Xiaoming Gao ◽  
Chongyang Zhang ◽  
Tao Li

ZY-3 is the first civilian high resolution stereo mapping satellite, which has been launched on 9th, Jan, 2012. The aim of ZY-3 satellite is to obtain high resolution stereo images and support the 1:50000 scale national surveying and mapping. Although ZY-3 has very high accuracy for direct geo-locations without GCPs (Ground Control Points), use of some GCPs is still indispensible for high precise stereo mapping. The GLAS (Geo-science Laser Altimetry System) loaded on the ICESat (Ice Cloud and land Elevation Satellite), which is the first laser altimetry satellite for earth observation. GLAS has played an important role in the monitoring of polar ice sheets, the measuring of land topography and vegetation canopy heights after launched in 2003. Although GLAS has ended in 2009, the derived elevation dataset still can be used after selection by some criteria. <br><br> In this paper, the ICESat/GLAS laser altimeter data is used as height reference data to improve the ZY-3 height accuracy. A selection method is proposed to obtain high precision GLAS elevation data. Two strategies to improve the ZY-3 height accuracy are introduced. One is the conventional bundle adjustment based on RFM and bias-compensated model, in which the GLAS footprint data is viewed as height control. The second is to correct the DSM (Digital Surface Model) straightly by simple block adjustment, and the DSM is derived from the ZY-3 stereo imaging after freedom adjustment and dense image matching. The experimental result demonstrates that the height accuracy of ZY-3 without other GCPs can be improved to 3.0 meter after adding GLAS elevation data. What’s more, the comparison of the accuracy and efficiency between the two strategies is implemented for application.


Author(s):  
J. Wei ◽  
J. Jiang ◽  
A. Yilmaz

Abstract. Estimating the heights of objects in the field of view has applications in many tasks such as robotics, autonomous platforms and video surveillance. Object height is a concrete and indispensable characteristic people or machine could learn and capture. Many actions such as vehicle avoiding obstacles will be taken based on it. Traditionally, object height can be estimated using laser ranging, radar or stereo camera. Depending on the application, cost of these techniques may inhibit their use, especially in autonomous platforms. Use of available sensors with lower cost would make the adoption of such techniques at higher rates. Our approach to height estimation requires only a single 2D image. To solve this problem we introduce the Monocular Object Height Estimation Network (MOHE-Net) that includes a cascade of two networks. The first network performs the object detection task. This network detects the bounding box of objects of interest. This information is then input to a second network to estimate the object height and is a linear Multi-layer Perceptron (MLP). The linear MLP model models the camera-scene geometry and does not require training or contain activation function as normal MLP did. The developed approach works for static camera set up as well as moving platform. The proposed approach performs state-of-the-art and can be deployed for obstacle avoidance on autonomous platforms. Our code is available at https://github.com/OSUPCVLab/Ford2019/tree/master/Moving%20Object%20Height% 20Estimation%20Network


Author(s):  
Guoyuan Li ◽  
Xinming Tang ◽  
Xiaoming Gao ◽  
Chongyang Zhang ◽  
Tao Li

ZY-3 is the first civilian high resolution stereo mapping satellite, which has been launched on 9th, Jan, 2012. The aim of ZY-3 satellite is to obtain high resolution stereo images and support the 1:50000 scale national surveying and mapping. Although ZY-3 has very high accuracy for direct geo-locations without GCPs (Ground Control Points), use of some GCPs is still indispensible for high precise stereo mapping. The GLAS (Geo-science Laser Altimetry System) loaded on the ICESat (Ice Cloud and land Elevation Satellite), which is the first laser altimetry satellite for earth observation. GLAS has played an important role in the monitoring of polar ice sheets, the measuring of land topography and vegetation canopy heights after launched in 2003. Although GLAS has ended in 2009, the derived elevation dataset still can be used after selection by some criteria. &lt;br&gt;&lt;br&gt; In this paper, the ICESat/GLAS laser altimeter data is used as height reference data to improve the ZY-3 height accuracy. A selection method is proposed to obtain high precision GLAS elevation data. Two strategies to improve the ZY-3 height accuracy are introduced. One is the conventional bundle adjustment based on RFM and bias-compensated model, in which the GLAS footprint data is viewed as height control. The second is to correct the DSM (Digital Surface Model) straightly by simple block adjustment, and the DSM is derived from the ZY-3 stereo imaging after freedom adjustment and dense image matching. The experimental result demonstrates that the height accuracy of ZY-3 without other GCPs can be improved to 3.0 meter after adding GLAS elevation data. What’s more, the comparison of the accuracy and efficiency between the two strategies is implemented for application.


2020 ◽  
Vol 49 (11) ◽  
pp. 20200234-20200234
Author(s):  
李国元 Guoyuan Li ◽  
么嘉棋 Jiaqi Yao ◽  
赵一鸣 Yiming Zhao ◽  
李正强 Zhengqiang Li ◽  
李旭 Xu Li ◽  
...  

2002 ◽  
Vol 34 ◽  
pp. 330-334 ◽  
Author(s):  
Sagi Filin ◽  
Beáta Csathó

AbstractTo exploit the high accuracy potential of laser ranging, suitable laser-altimeter calibration procedures combining laboratory and in-flight calibration steps are needed. Previous calibration schemes have limited the calibration process to flying over planar surfaces, and systematic errors remained in the system. In this paper we present a laser calibration algorithm that utilizes natural surfaces as calibration sites. This is especially important for calibrating systems in the interior of ice sheets. The proposed approach is demonstrated in calibrating the U.S. National Science Foundation Support Office for Aerogeophysical Research laser altimetry system. The results show a significant improvement in accuracy.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
J. Saydi ◽  
A. Lotfalian ◽  
M. Abedi ◽  
J. Khalilzadeh ◽  
H. Saghafifar

Atmospheric models based on surface measurements of pressure, temperature, and relative humidity have been used to increase the laser ranging accuracy by ray tracing. Atmospheric refraction can cause significant errors in laser ranging systems. Through the present research, the atmospheric effects on the laser beam were investigated by using the principles of laser ranging. Atmospheric correction was calculated for 0.532, 1.3, and 10.6 micron wavelengths through the weather conditions of Tehran, Isfahan, and Bushehr in Iran since March 2012 to March 2013. Through the present research the atmospheric correction was computed for meteorological data in base of monthly mean. Of course, the meteorological data were received from meteorological stations in Tehran, Isfahan, and Bushehr. Atmospheric correction was calculated for 11, 100, and 200 kilometers laser beam propagations under 30°, 60°, and 90° rising angles for each propagation. The results of the study showed that in the same months and beam emission angles, the atmospheric correction was most accurate for 10.6 micron wavelength. The laser ranging error was decreased by increasing the laser emission angle. The atmospheric correction with two Marini-Murray and Mendes-Pavlis models for 0.532 nm was compared.


2018 ◽  
Vol 176 ◽  
pp. 01040
Author(s):  
Yao Fan ◽  
Wenxiang Liu ◽  
Wei Xiao ◽  
Guangfu Sun

When using RDSS positioning under elevation constraints, traditional positioning accuracy estimation methods may not reflect the impact of satellite ranging error and elevation error on positioning performance accurately. In order to evaluate RDSS positioning performance more accurately, the RDSS positioning principle is presented, and the weighted position dilution of precision (WPDOP) is used to replace the traditional algorithm. The positioning error calculated by WPDOP is closer to actual results, indicating better prediction capability of positioning performance. Under different elevation error conditions, the position dilution of precision (PDOP) distribution of the service area indicates that the difference between the two precision factors is mainly affected by the elevation error and latitude, while the influence of longitude is small.


Sign in / Sign up

Export Citation Format

Share Document