scholarly journals B-FGC-Net: A Building Extraction Network from High Resolution Remote Sensing Imagery

2022 ◽  
Vol 14 (2) ◽  
pp. 269
Author(s):  
Yong Wang ◽  
Xiangqiang Zeng ◽  
Xiaohan Liao ◽  
Dafang Zhuang

Deep learning (DL) shows remarkable performance in extracting buildings from high resolution remote sensing images. However, how to improve the performance of DL based methods, especially the perception of spatial information, is worth further study. For this purpose, we proposed a building extraction network with feature highlighting, global awareness, and cross level information fusion (B-FGC-Net). The residual learning and spatial attention unit are introduced in the encoder of the B-FGC-Net, which simplifies the training of deep convolutional neural networks and highlights the spatial information representation of features. The global feature information awareness module is added to capture multiscale contextual information and integrate the global semantic information. The cross level feature recalibration module is used to bridge the semantic gap between low and high level features to complete the effective fusion of cross level information. The performance of the proposed method was tested on two public building datasets and compared with classical methods, such as UNet, LinkNet, and SegNet. Experimental results demonstrate that B-FGC-Net exhibits improved profitability of accurate extraction and information integration for both small and large scale buildings. The IoU scores of B-FGC-Net on WHU and INRIA Building datasets are 90.04% and 79.31%, respectively. B-FGC-Net is an effective and recommended method for extracting buildings from high resolution remote sensing images.

2019 ◽  
Vol 11 (20) ◽  
pp. 2380 ◽  
Author(s):  
Liu ◽  
Luo ◽  
Huang ◽  
Hu ◽  
Sun ◽  
...  

Deep convolutional neural networks have promoted significant progress in building extraction from high-resolution remote sensing imagery. Although most of such work focuses on modifying existing image segmentation networks in computer vision, we propose a new network in this paper, Deep Encoding Network (DE-Net), that is designed for the very problem based on many lately introduced techniques in image segmentation. Four modules are used to construct DE-Net: the inceptionstyle downsampling modules combining a striding convolution layer and a max-pooling layer, the encoding modules comprising six linear residual blocks with a scaled exponential linear unit (SELU) activation function, the compressing modules reducing the feature channels, and a densely upsampling module that enables the network to encode spatial information inside feature maps. Thus, DE-Net achieves stateoftheart performance on the WHU Building Dataset in recall, F1-Score, and intersection over union (IoU) metrics without pretraining. It also outperformed several segmentation networks in our self-built Suzhou Satellite Building Dataset. The experimental results validate the effectiveness of DE-Net on building extraction from aerial imagery and satellite imagery. It also suggests that given enough training data, designing and training a network from scratch may excel fine-tuning models pre-trained on datasets unrelated to building extraction.


2020 ◽  
Vol 13 (1) ◽  
pp. 71
Author(s):  
Zhiyong Xu ◽  
Weicun Zhang ◽  
Tianxiang Zhang ◽  
Jiangyun Li

Semantic segmentation is a significant method in remote sensing image (RSIs) processing and has been widely used in various applications. Conventional convolutional neural network (CNN)-based semantic segmentation methods are likely to lose the spatial information in the feature extraction stage and usually pay little attention to global context information. Moreover, the imbalance of category scale and uncertain boundary information meanwhile exists in RSIs, which also brings a challenging problem to the semantic segmentation task. To overcome these problems, a high-resolution context extraction network (HRCNet) based on a high-resolution network (HRNet) is proposed in this paper. In this approach, the HRNet structure is adopted to keep the spatial information. Moreover, the light-weight dual attention (LDA) module is designed to obtain global context information in the feature extraction stage and the feature enhancement feature pyramid (FEFP) structure is promoted and employed to fuse the contextual information of different scales. In addition, to achieve the boundary information, we design the boundary aware (BA) module combined with the boundary aware loss (BAloss) function. The experimental results evaluated on Potsdam and Vaihingen datasets show that the proposed approach can significantly improve the boundary and segmentation performance up to 92.0% and 92.3% on overall accuracy scores, respectively. As a consequence, it is envisaged that the proposed HRCNet model will be an advantage in remote sensing images segmentation.


2021 ◽  
Vol 13 (13) ◽  
pp. 2473
Author(s):  
Qinglie Yuan ◽  
Helmi Zulhaidi Mohd Shafri ◽  
Aidi Hizami Alias ◽  
Shaiful Jahari Hashim

Automatic building extraction has been applied in many domains. It is also a challenging problem because of the complex scenes and multiscale. Deep learning algorithms, especially fully convolutional neural networks (FCNs), have shown robust feature extraction ability than traditional remote sensing data processing methods. However, hierarchical features from encoders with a fixed receptive field perform weak ability to obtain global semantic information. Local features in multiscale subregions cannot construct contextual interdependence and correlation, especially for large-scale building areas, which probably causes fragmentary extraction results due to intra-class feature variability. In addition, low-level features have accurate and fine-grained spatial information for tiny building structures but lack refinement and selection, and the semantic gap of across-level features is not conducive to feature fusion. To address the above problems, this paper proposes an FCN framework based on the residual network and provides the training pattern for multi-modal data combining the advantage of high-resolution aerial images and LiDAR data for building extraction. Two novel modules have been proposed for the optimization and integration of multiscale and across-level features. In particular, a multiscale context optimization module is designed to adaptively generate the feature representations for different subregions and effectively aggregate global context. A semantic guided spatial attention mechanism is introduced to refine shallow features and alleviate the semantic gap. Finally, hierarchical features are fused via the feature pyramid network. Compared with other state-of-the-art methods, experimental results demonstrate superior performance with 93.19 IoU, 97.56 OA on WHU datasets and 94.72 IoU, 97.84 OA on the Boston dataset, which shows that the proposed network can improve accuracy and achieve better performance for building extraction.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3232 ◽  
Author(s):  
Yan Liu ◽  
Qirui Ren ◽  
Jiahui Geng ◽  
Meng Ding ◽  
Jiangyun Li

Efficient and accurate semantic segmentation is the key technique for automatic remote sensing image analysis. While there have been many segmentation methods based on traditional hand-craft feature extractors, it is still challenging to process high-resolution and large-scale remote sensing images. In this work, a novel patch-wise semantic segmentation method with a new training strategy based on fully convolutional networks is presented to segment common land resources. First, to handle the high-resolution image, the images are split as local patches and then a patch-wise network is built. Second, training data is preprocessed in several ways to meet the specific characteristics of remote sensing images, i.e., color imbalance, object rotation variations and lens distortion. Third, a multi-scale training strategy is developed to solve the severe scale variation problem. In addition, the impact of conditional random field (CRF) is studied to improve the precision. The proposed method was evaluated on a dataset collected from a capital city in West China with the Gaofen-2 satellite. The dataset contains ten common land resources (Grassland, Road, etc.). The experimental results show that the proposed algorithm achieves 54.96% in terms of mean intersection over union (MIoU) and outperforms other state-of-the-art methods in remote sensing image segmentation.


2020 ◽  
Vol 12 (6) ◽  
pp. 1050 ◽  
Author(s):  
Zhenfeng Shao ◽  
Penghao Tang ◽  
Zhongyuan Wang ◽  
Nayyer Saleem ◽  
Sarath Yam ◽  
...  

Building extraction from high-resolution remote sensing images is of great significance in urban planning, population statistics, and economic forecast. However, automatic building extraction from high-resolution remote sensing images remains challenging. On the one hand, the extraction results of buildings are partially missing and incomplete due to the variation of hue and texture within a building, especially when the building size is large. On the other hand, the building footprint extraction of buildings with complex shapes is often inaccurate. To this end, we propose a new deep learning network, termed Building Residual Refine Network (BRRNet), for accurate and complete building extraction. BRRNet consists of such two parts as the prediction module and the residual refinement module. The prediction module based on an encoder–decoder structure introduces atrous convolution of different dilation rates to extract more global features, by gradually increasing the receptive field during feature extraction. When the prediction module outputs the preliminary building extraction results of the input image, the residual refinement module takes the output of the prediction module as an input. It further refines the residual between the result of the prediction module and the real result, thus improving the accuracy of building extraction. In addition, we use Dice loss as the loss function during training, which effectively alleviates the problem of data imbalance and further improves the accuracy of building extraction. The experimental results on Massachusetts Building Dataset show that our method outperforms other five state-of-the-art methods in terms of the integrity of buildings and the accuracy of complex building footprints.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yu Wang ◽  
Xiaofei Wang ◽  
Junfan Jian

Landslides are a type of frequent and widespread natural disaster. It is of great significance to extract location information from the landslide in time. At present, most articles still select single band or RGB bands as the feature for landslide recognition. To improve the efficiency of landslide recognition, this study proposed a remote sensing recognition method based on the convolutional neural network of the mixed spectral characteristics. Firstly, this paper tried to add NDVI (normalized difference vegetation index) and NIRS (near-infrared spectroscopy) to enhance the features. Then, remote sensing images (predisaster and postdisaster images) with same spatial information but different time series information regarding landslide are taken directly from GF-1 satellite as input images. By combining the 4 bands (red + green + blue + near-infrared) of the prelandslide remote sensing images with the 4 bands of the postlandslide images and NDVI images, images with 9 bands were obtained, and the band values reflecting the changing characteristics of the landslide were determined. Finally, a deep learning convolutional neural network (CNN) was introduced to solve the problem. The proposed method was tested and verified with remote sensing data from the 2015 large-scale landslide event in Shanxi, China, and 2016 large-scale landslide event in Fujian, China. The results showed that the accuracy of the method was high. Compared with the traditional methods, the recognition efficiency was improved, proving the effectiveness and feasibility of the method.


2020 ◽  
Vol 86 (4) ◽  
pp. 235-245 ◽  
Author(s):  
Ka Zhang ◽  
Hui Chen ◽  
Wen Xiao ◽  
Yehua Sheng ◽  
Dong Su ◽  
...  

This article proposes a new building extraction method from high-resolution remote sensing images, based on GrabCut, which can automatically select foreground and background samples under the constraints of building elevation contour lines. First the image is rotated according to the direction of pixel displacement calculated by the rational function Model. Second, the Canny operator, combined with morphology and the Hough transform, is used to extract the building's elevation contour lines. Third, seed points and interesting points of the building are selected under the constraint of the contour line and the geodesic distance. Then foreground and background samples are obtained according to these points. Fourth, GrabCut and geometric features are used to carry out image segmentation and extract buildings. Finally, WorldView satellite images are used to verify the proposed method. Experimental results show that the average accuracy can reach 86.34%, which is 15.12% higher than other building extraction methods.


Sign in / Sign up

Export Citation Format

Share Document