scholarly journals A Multi-Domain Collaborative Transfer Learning Method with Multi-Scale Repeated Attention Mechanism for Underwater Side-Scan Sonar Image Classification

2022 ◽  
Vol 14 (2) ◽  
pp. 355
Author(s):  
Zhen Cheng ◽  
Guanying Huo ◽  
Haisen Li

Due to the strong speckle noise caused by the seabed reverberation which makes it difficult to extract discriminating and noiseless features of a target, recognition and classification of underwater targets using side-scan sonar (SSS) images is a big challenge. Moreover, unlike classification of optical images which can use a large dataset to train the classifier, classification of SSS images usually has to exploit a very small dataset for training, which may cause classifier overfitting. Compared with traditional feature extraction methods using descriptors—such as Haar, SIFT, and LBP—deep learning-based methods are more powerful in capturing discriminating features. After training on a large optical dataset, e.g., ImageNet, direct fine-tuning method brings improvement to the sonar image classification using a small-size SSS image dataset. However, due to the different statistical characteristics between optical images and sonar images, transfer learning methods—e.g., fine-tuning—lack cross-domain adaptability, and therefore cannot achieve very satisfactory results. In this paper, a multi-domain collaborative transfer learning (MDCTL) method with multi-scale repeated attention mechanism (MSRAM) is proposed for improving the accuracy of underwater sonar image classification. In the MDCTL method, low-level characteristic similarity between SSS images and synthetic aperture radar (SAR) images, and high-level representation similarity between SSS images and optical images are used together to enhance the feature extraction ability of the deep learning model. Using different characteristics of multi-domain data to efficiently capture useful features for the sonar image classification, MDCTL offers a new way for transfer learning. MSRAM is used to effectively combine multi-scale features to make the proposed model pay more attention to the shape details of the target excluding the noise. Experimental results of classification show that, in using multi-domain data sets, the proposed method is more stable with an overall accuracy of 99.21%, bringing an improvement of 4.54% compared with the fine-tuned VGG19. Results given by diverse visualization methods also demonstrate that the method is more powerful in feature representation by using the MDCTL and MSRAM.

2021 ◽  
Author(s):  
Quoc-Huy Trinh ◽  
Minh-Van Nguyen

We propose a method that configures Fine-tuning to a combination of backbone DenseNet and ResNet to classify eight classes showing anatomical landmarks, pathological findings, to endoscopic procedures in the GI tract. Our Technique depends on Transfer Learning which combines two backbones, DenseNet 121 and ResNet 101, to improve the performance of Feature Extraction for classifying the target class. After experiment and evaluating our work, we get accuracy with an F1 score of approximately 0.93 while training 80000 and test 4000 images.


Healthcare ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1579
Author(s):  
Wansuk Choi ◽  
Seoyoon Heo

The purpose of this study was to classify ULTT videos through transfer learning with pre-trained deep learning models and compare the performance of the models. We conducted transfer learning by combining a pre-trained convolution neural network (CNN) model into a Python-produced deep learning process. Videos were processed on YouTube and 103,116 frames converted from video clips were analyzed. In the modeling implementation, the process of importing the required modules, performing the necessary data preprocessing for training, defining the model, compiling, model creation, and model fit were applied in sequence. Comparative models were Xception, InceptionV3, DenseNet201, NASNetMobile, DenseNet121, VGG16, VGG19, and ResNet101, and fine tuning was performed. They were trained in a high-performance computing environment, and validation and loss were measured as comparative indicators of performance. Relatively low validation loss and high validation accuracy were obtained from Xception, InceptionV3, and DenseNet201 models, which is evaluated as an excellent model compared with other models. On the other hand, from VGG16, VGG19, and ResNet101, relatively high validation loss and low validation accuracy were obtained compared with other models. There was a narrow range of difference between the validation accuracy and the validation loss of the Xception, InceptionV3, and DensNet201 models. This study suggests that training applied with transfer learning can classify ULTT videos, and that there is a difference in performance between models.


2020 ◽  
Vol 10 (17) ◽  
pp. 5792 ◽  
Author(s):  
Biserka Petrovska ◽  
Tatjana Atanasova-Pacemska ◽  
Roberto Corizzo ◽  
Paolo Mignone ◽  
Petre Lameski ◽  
...  

Remote Sensing (RS) image classification has recently attracted great attention for its application in different tasks, including environmental monitoring, battlefield surveillance, and geospatial object detection. The best practices for these tasks often involve transfer learning from pre-trained Convolutional Neural Networks (CNNs). A common approach in the literature is employing CNNs for feature extraction, and subsequently train classifiers exploiting such features. In this paper, we propose the adoption of transfer learning by fine-tuning pre-trained CNNs for end-to-end aerial image classification. Our approach performs feature extraction from the fine-tuned neural networks and remote sensing image classification with a Support Vector Machine (SVM) model with linear and Radial Basis Function (RBF) kernels. To tune the learning rate hyperparameter, we employ a linear decay learning rate scheduler as well as cyclical learning rates. Moreover, in order to mitigate the overfitting problem of pre-trained models, we apply label smoothing regularization. For the fine-tuning and feature extraction process, we adopt the Inception-v3 and Xception inception-based CNNs, as well the residual-based networks ResNet50 and DenseNet121. We present extensive experiments on two real-world remote sensing image datasets: AID and NWPU-RESISC45. The results show that the proposed method exhibits classification accuracy of up to 98%, outperforming other state-of-the-art methods.


2021 ◽  
Author(s):  
Yanghua Tang ◽  
Hongjian Wang ◽  
Yao Xiao ◽  
Wei Gao ◽  
Zhao Wang

Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1993
Author(s):  
Jing Zhang ◽  
Zhenhao Li ◽  
Ruqian Hao ◽  
Xiangzhou Wang ◽  
Xiaohui Du ◽  
...  

Microscopic laser engraving surface defect classification plays an important role in the industrial quality inspection field. The key challenges of accurate surface defect classification are the complete description of the defect and the correct distinction into categories in the feature space. Traditional classification methods focus on the terms of feature extraction and independent classification; therefore, feed handcrafted features may result in useful feature loss. In recent years, convolutional neural networks (CNNs) have achieved excellent results in image classification tasks with the development of deep learning. Deep convolutional networks integrate feature extraction and classification into self-learning, but require large datasets. The training datasets for microscopic laser engraving image classification are small; therefore, we used pre-trained CNN models and applied two fine-tuning strategies. Transfer learning proved to perform well even on small future datasets. The proposed method was evaluated on the datasets consisting of 1986 laser engraving images captured by a metallographic microscope and annotated by experienced staff. Because handcrafted features were not used, our method is more robust and achieves better results than traditional classification methods. Under five-fold-validation, the average accuracy of the best model based on DenseNet121 is 96.72%.


Author(s):  
Kasikrit Damkliang ◽  
Thakerng Wongsirichot ◽  
Paramee Thongsuksai

Since the introduction of image pattern recognition and computer vision processing, the classification of cancer tissues has been a challenge at pixel-level, slide-level, and patient-level. Conventional machine learning techniques have given way to Deep Learning (DL), a contemporary, state-of-the-art approach to texture classification and localization of cancer tissues. Colorectal Cancer (CRC) is the third ranked cause of death from cancer worldwide. This paper proposes image-level texture classification of a CRC dataset by deep convolutional neural networks (CNN). Simple DL techniques consisting of transfer learning and fine-tuning were exploited. VGG-16, a Keras pre-trained model with initial weights by ImageNet, was applied. The transfer learning architecture and methods responding to VGG-16 are proposed. The training, validation, and testing sets included 5000 images of 150 × 150 pixels. The application set for detection and localization contained 10 large original images of 5000 × 5000 pixels. The model achieved F1-score and accuracy of 0.96 and 0.99, respectively, and produced a false positive rate of 0.01. AUC-based evaluation was also measured. The model classified ten large previously unseen images from the application set represented in false color maps. The reported results show the satisfactory performance of the model. The simplicity of the architecture, configuration, and implementation also contributes to the outcome this work.


2020 ◽  
Vol 10 (10) ◽  
pp. 3359 ◽  
Author(s):  
Ibrahem Kandel ◽  
Mauro Castelli

Accurate classification of medical images is of great importance for correct disease diagnosis. The automation of medical image classification is of great necessity because it can provide a second opinion or even a better classification in case of a shortage of experienced medical staff. Convolutional neural networks (CNN) were introduced to improve the image classification domain by eliminating the need to manually select which features to use to classify images. Training CNN from scratch requires very large annotated datasets that are scarce in the medical field. Transfer learning of CNN weights from another large non-medical dataset can help overcome the problem of medical image scarcity. Transfer learning consists of fine-tuning CNN layers to suit the new dataset. The main questions when using transfer learning are how deeply to fine-tune the network and what difference in generalization that will make. In this paper, all of the experiments were done on two histopathology datasets using three state-of-the-art architectures to systematically study the effect of block-wise fine-tuning of CNN. Results show that fine-tuning the entire network is not always the best option; especially for shallow networks, alternatively fine-tuning the top blocks can save both time and computational power and produce more robust classifiers.


Author(s):  
H. Teffahi ◽  
N. Teffahi

Abstract. The classification of hyperspectral image (HSI) with high spectral and spatial resolution represents an important and challenging task in image processing and remote sensing (RS) domains due to the problem of computational complexity and big dimensionality of the remote sensing images. The spatial and spectral pixel characteristics have crucial significance for hyperspectral image classification and to take into account these two types of characteristics, various classification and feature extraction methods have been developed to improve spectral-spatial classification of remote sensing images for thematic mapping purposes such as agricultural mapping, urban mapping, emergency mapping in case of natural disasters... In recent years, mathematical morphology and deep learning (DL) have been recognized as prominent feature extraction techniques that led to remarkable spectral-spatial classification performances. Among them, Extended Multi-Attribute Profiles (EMAP) and Dense Convolutional Neural Network (DCNN) are considered as robust and powerful approaches such as the work in this paper is based on these two techniques for the feature extraction stage and used in two combined manners and constructing the EMAP-DCNN frame. The experiments were conducted on two popular datasets: “Indian Pines” and “Huston” hyperspectral datasets. Experimental results demonstrate that the two proposed approaches of the EMAP-DCNN frame denoted EMAP-DCNN 1, EMAP-DCNN 2 provide competitive performances compared with some state-of-the-art spectral-spatial classification methods based on deep learning.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Tulika Kakati ◽  
Dhruba K. Bhattacharyya ◽  
Jugal K. Kalita ◽  
Trina M. Norden-Krichmar

Abstract Background A limitation of traditional differential expression analysis on small datasets involves the possibility of false positives and false negatives due to sample variation. Considering the recent advances in deep learning (DL) based models, we wanted to expand the state-of-the-art in disease biomarker prediction from RNA-seq data using DL. However, application of DL to RNA-seq data is challenging due to absence of appropriate labels and smaller sample size as compared to number of genes. Deep learning coupled with transfer learning can improve prediction performance on novel data by incorporating patterns learned from other related data. With the emergence of new disease datasets, biomarker prediction would be facilitated by having a generalized model that can transfer the knowledge of trained feature maps to the new dataset. To the best of our knowledge, there is no Convolutional Neural Network (CNN)-based model coupled with transfer learning to predict the significant upregulating (UR) and downregulating (DR) genes from both trained and untrained datasets. Results We implemented a CNN model, DEGnext, to predict UR and DR genes from gene expression data obtained from The Cancer Genome Atlas database. DEGnext uses biologically validated data along with logarithmic fold change values to classify differentially expressed genes (DEGs) as UR and DR genes. We applied transfer learning to our model to leverage the knowledge of trained feature maps to untrained cancer datasets. DEGnext’s results were competitive (ROC scores between 88 and 99$$\%$$ % ) with those of five traditional machine learning methods: Decision Tree, K-Nearest Neighbors, Random Forest, Support Vector Machine, and XGBoost. DEGnext was robust and effective in terms of transferring learned feature maps to facilitate classification of unseen datasets. Additionally, we validated that the predicted DEGs from DEGnext were mapped to significant Gene Ontology terms and pathways related to cancer. Conclusions DEGnext can classify DEGs into UR and DR genes from RNA-seq cancer datasets with high performance. This type of analysis, using biologically relevant fine-tuning data, may aid in the exploration of potential biomarkers and can be adapted for other disease datasets.


Sign in / Sign up

Export Citation Format

Share Document